Реактивный двигатель: мотор, подаривший людям небо

Немного истории

Когда в 1903 году первый самолет братьев Райт с поршневым ДВС поднялся в воздух, советский ученый Константин Циолковский написал труд о применении реактивной тяги для преодоления гравитации. В нем были приведены основные идеи теории реактивного движения. Как всегда бывает с гениальными открытиями, его работу не восприняли всерьез. Лишь десятки лет спустя суждено было сбыться тому, что ученый уже давно зафиксировал на бумаге.

Так случилось, что турбореактивный двигатель был принят к серийному производству в Германии в конце тридцатых годов. В проекте приняли участие такие известные компании, как «Хейникель», «БМВ», «Дэймлер-Бенс» и «Порш». Но главным производителем стал все-таки «Джанкерс».

Несмотря на успех, развиваться это направление в то время не стало.

В Советском Союзе разработкой начал заниматься авиаконструктор Архип Люлька. В первой половине сорокового года он запатентовал схему, на которой был двухконтурный турбореактивный двигатель. К сожалению, руководство страны тогда не поддержало ученого, хотя позже он и получил признание во всем мире. Архипу Люльке было предписано заниматься танковыми разработками. К турбореактивным двигателям он вернулся только после того, когда они появились в Германии.

Первые испытания двигателя были проведены в 1947 году.

Что такое степень двухконтурности авиационного двигателя

Wikimedia Foundation . 2010 .

Смотреть что такое «Степень двухконтурности» в других словарях:

Степень двухконтурности — параметр рабочего процесса турбореактивного двухконтурного двигателя (см. Параметры рабочего процесса двигателя), равный отношению расхода воздуха в наружном контуре к расходу воздуха во внутреннем контуре. С. д. является одним из основных… … Энциклопедия техники

Степень — Термин «степень» может означать: В математике Возведение в степень Декартова степень Корень n й степени Степень множества Степень многочлена Степень дифференциального уравнения Степень отображения Степень точки в геометрии Степени тысячи… … Википедия

ПВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые … Википедия

ПуВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые … Википедия

Турбореактивный двигатель — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей … Википедия

Воздушно-реактивный двигатель — (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… … Википедия

CFM56 (двигатели) — Вентилятор двигателя CFM56 Двигатель CFM56 … Википедия

НК-93 — Макет двигателя НК 93. Частично разрезан. МАКС 2009 Тип: турбо винтовентиляторный двухконтурный (ТРДД) Страна … Википедия

АИ — Рис. 1. Поршневой двигатель АИ 14Р. АИ марка авиационных двигателей, созданных в опытном КБ под руководством А. Г. Ивченко (см. Запорожское машиностроительное конструкторское бюро «Прогресс»). Двигатели, разработанные под руководством его… … Энциклопедия «Авиация»

АИ — Рис. 1. Поршневой двигатель АИ 14Р. АИ марка авиационных двигателей, созданных в опытном КБ под руководством А. Г. Ивченко (см. Запорожское машиностроительное конструкторское бюро «Прогресс»). Двигатели, разработанные под руководством его… … Энциклопедия «Авиация»

Источник

Здравствуйте, друзья!

ТРДД с вентилятором на входе.

В сегодняшней небольшой статье продолжаем более конкретное знакомство с типами авиационных двигателей. Двухконтурный турбореактивный двигатель ( ТРДД ) уже не раз упоминался по сайту и осталось только познакомиться с ним поближе.

Главная идея статьи в том, чтобы понять каково, собственно, главное отличие ТРДД от его предшественника, так сказать первого звена в двигательном семействе, обычного турбореактивного двигателя ( ТРД ).

Правильней, наверное, было бы сказать даже не просто отличие, а преимущество. Ведь на сегодняшний день ТРД активно сдает свои позиции (если уже не сдал совсем :-)) двухконтурному двигателю. ТРДД теперь превратился в самый распространенный воздушно-реактивный авиационный двигатель на земле.

Главная причина этому одна – высокая экономичность при столь же высокой тяговой эффективности. В наше время растущего энергодефицита такой важный фактор значит очень многое. Экономичность и, соответственно, дальность полета .Современный самолет с ТРДД имеет в этой области большие преимущества.

Первые разработки по теме двухконтурный турбореактивный двигатель начались еще в 19-м веке. Начал их (по крайней мере это официально известно :-)) русский инженер Федор Романович Гешвен (наш ! :-)). В 1939 году А.М. Люлька , ставший в последствии знаменитым конструктором авиадвигателей, разработал ТРДД такой схемы, которая используется в современных двухконтурных двигателях. Но ни тогда, ни в последующие годы проблема экономичности ТРД не стояла так остро, как сейчас. Это были скорее просто конструктивные варианты воздушно-реактивного двигателя, хотя выигрышно-положительные стороны их были известны.

Таковым положение дел оставалось вплоть до 50-х годов, когда ТРД уверенно стали завоевывать первенство среди авиационных двигателей мира. И уже тогда стал проявляться их, пожалуй, главный недостаток. На относительно небольших скоростях полета эти двигатели довольно неэкономичны . Или, говоря другими словами, имеют низкий коэффициент полезного действия .

В одной из прошлых статей я упомянул как-то прочитанный мной в одной из книг интересный факт, неплохо характеризующий этот недостаток. Там было сказано, что в течение одной летной смены полка сверхзвуковых бомбардировщиков ТУ-22 (они были оснащены ТРДФ) потреблялось количество керосина, равное месячному бюджету Белорусской ССР по топливу. За достоверность сказанного не ручаюсь, но очень похоже на правду :-).

То есть для повышения экономичности было бы конечно хорошо снизить подачу топлива в двигатель. Но ведь чем меньше топлива в камере сгорания, тем меньше температура газа. Воздушный поток, проходящий через двигатель, получит меньше энергии, и в дальнейшем, при выходе из сопла, скорость потока будет ниже. А это значит, что и тяга тоже уменьшится.

Устройство и принцип работы двигателя

Строение турбовального двигателя в общих чертах напоминает строение ТРД. Основными составляющими являются комрессор, турбина, камера сгорания и вал. В отличие от других газотурбинных двигателей ТВаД совсем не имеет реактивной тяги – вся свободная энергия расходуется на вращение вала, поэтому и сопла, как такового, у него нет, а есть только каналы (своеобразные выхлопные трубы), по которым отводятся отработанные газы. Еще одна особенность ТВаД – наличие не одной, а двух турбин, не связанных между собой механически. Одна турбина приводит в движение компрессор, а вторая – рабочий вал. Между собой они связаны газодинамически. Некоторые модели турбовинтовых двигателей также имеют схожую конструкцию, но не обязательно. В случае с ТВаД турбин всегда две.

Две основные схемы устройства ТВаД с описание расположенных механизмов. Картинки кликабельны.

Принцип работы турбовального двигателя тоже не сильно отличается от ТРД или ТВД. Компрессор, приводимый в движение турбиной, нагнетает воздух в камеру сгорания, где он перемешивается с впрыснутым через форсунки топливом. Топливный заряд воспламеняется и сгорает, в результате чего образуются газы с большим запасом энергии. Расширяясь, они вращают турбины, приводя в движение компрессор и вал, а отработанные газы выводятся наружу.

Компрессор турбовального двигателя имеет несколько ступеней и может быть центробежным, осевым или комбинированным. Комбинированные компрессоры сочетают в себе и центробежные, и осевые ступени.

Обязательным конструктивным элементом ТВаД, как, впрочем, и турбовинтового двигателя, является редуктор, установленный между турбиной и валом. Сама турбина вращается с угловой скоростью, достигающей 20 000 об/мин. Понятно, что винт, закрепленный на валу и создающий тягу, не сможет работать при такой скорости и выполнять свои функции, ведь тогда ему придется вращаться со сверхзвуковой скоростью. Редуктор, установленный перед валом, понижает обороты и увеличивает крутящий момент, так что скорость вращения лопастей винта вертолета значительно меньше скорости вращения турбины.

Если турбовинтовые двигатели, которые используются на самолетах, должны иметь компактные размеры, а вал турбины и вал винта у них устанавливаются параллельно в одном корпусе, то к габаритам турбовальных двигателей таких жестких требований нет. Рабочий вал у них может находиться впереди турбины или за ней, в одном корпусе с ней или отдельно. Это объясняется тем, что мотор спрятан в конструкции кабины, где его можно расположить в любом удобном положении. Различают цельные моторы и модульные, состоящие из отдельных модулей, связанных между собой механически. Часто в одном модуле расположены компрессор и турбины, а в другом – рабочий вал, связанный с валом турбины редуктором.

Легкий американский вертолет AH-6j Little Bird

Сфера использования

Турбовинтовые двигатели используются в тех случаях, когда скорости полета самолета относительно невелики. На большом количестве современных транспортных самолетов применяются именно ТВД. Их преимущество прежде всего в экономичности. 

Для турбовинтовых двигателей сила тяги состоит из тяги воздушного винта и силы тяги, возникающей при истечении газа из сопла. В зависимости от скорости полета самолета изменяются доли двух составляющих тяги.

При малых скоростях (крейсерских для транспортных самолетов) доля тяги от воздушных винтов значительно превышает вторую составляющую.

В ТВД часто используется комбинация компрессоров.

Реактивную тягу также создает струя раскаленных газов, выходящая из сопла двигателя.

Отношение объемов воздуха, прокачиваемых через внешний контур и через камеру сгорания, называется «степенью двухконтурности».

Двигатели, у которых степень двухконтурности высока и составляет от 2 до 10, называют турбовентиляторными, а имеющее сравнительно большой диаметр первое колесо компрессора низкого давления — вентилятором.

Преимущества турбовентиляторного двигателя от турбореактивного таковы: во‑первых, если большая часть реактивной тяги создается продуваемым воздухом, а не реактивными газами, повышается топливная эффективность, а значит, экономичность и экологичность всей силовой установки. Во‑вторых, на выходе из сопла (или сопл) холодный воздух смешивается с горячими газами, снижая общее давление смеси. Это делает двигатель менее шумным.

Туробореактивные двигатели ставят на самолеты с требованием значительной скорости и соответственно мощности.

Конструкция двухконтурных турбореактивных двигателей обеспечивает поступление воздуха в значительных количествах, что на высоких скоростях обеспечивает большую тягу. Второй контур, контур низкого давления, таким образом, дает дополнительную силу тяги. Соотношение двух составляющих общей тяги зависит от конструкции двигателей и режимов работы.

Минус и плюс мотора

Газотурбинный агрегат способен вырабатывать большой момент, а значит повышенные показатели мощности. Для охлаждения сопутствующих элементов нет каких-либо устройств, поскольку соприкасающихся поверхностей мало. В то же время, подшипников используется не много, а качество деталей свидетельствует о надёжности и безотказности агрегата.

Отрицательный аспект, это дороговизна используемых материалов при изготовлении деталей и, как следствие, немалые вложения в починку механизма. Несмотря на недостатки, конструкция постоянно дорабатывается и совершенствуется.

Газотурбинный двигатель используют в авиации, на автомобилях установку применяют как эксперимент. Это произошло по причине постоянной потребности в охлаждении газов, поступающих на лопатки турбины. Это снижает полезное действие агрегата, увеличивая потребление горючего.

Главные преимущества мотора:

  • Пониженная степень загрязнения выхлопных газов;
  • Починка простая и лёгкая (не содержит расходных материалов);
  • Отсутствие вибрации;
  • Пониженный шум при эксплуатации агрегата;
  • Повышенные характеристики импульса;
  • Включение и отклик на педаль акселератора без задержек;
  • Повышено соотношение мощности и веса.

Танковая установка «ГТД-1500»:

Реактивные двигатели в самолете

Первый реактивный самолет был разработан немцами в 1937 году, а его испытания начались лишь в 1939 году. Однако имеющиеся на то время двигатели потребляли невероятно большое количество топлива и запас хода такого самолета составлял всего лишь 60 км.

В это же время Японии и Великобритании удалось создать собственные самолеты с реактивными двигателями. Но это были лишь опытные экземпляры, так и не поступившие в серийное производство.

Первым серийным реактивным самолетом стал немецкий «Мессершмит», который, однако, не позволил гитлеровской коалиции взять верх в развязанной ими войне.

Мессершмитт Me-262 Швальбе/Штурмфогель

В гражданской же авиации реактивные самолеты появились лишь в 1952 году в Великобритании.

С тех пор и по настоящие дни, реактивные двигатели являются основными двигателями, применяемыми в самолетостроении. Именно благодаря им, современны лайнеры развивают скорость до 800 километров в час.

Улучшения цикла

Операция типичного турбореактивного двигателя смоделирована приблизительно Циклом Брайтона.

Эффективность газовой турбины увеличена, подняв полное отношение давления, требуя более высоких температурных материалов компрессора, и подняв турбинную температуру входа, требуя лучших турбинных материалов и/или улучшенного охлаждения лопасти/лезвия.

Однако, когда используется в турбореактивном применении, где продукция от газовой турбины используется в носике продвижения, поднимая турбинные повышения температуры реактивная скорость. Это уменьшает продвигающую эффективность, дающую потерю в полной эффективности, как отражено более высоким расходом топлива или SFC.

Использование двигателя. Преимущества и недостатки

Современные ТРД практически не оснащаются центробежными компрессорами. В сравнение с осевым у центробежного компрессора каждая ступень сжатия более эффективная, но общее КПД при этом ниже. Это объясняется тем, что многоступенчатые центробежные компрессоры имеют очень сложную конструкцию и большие габариты, что увеличивает и их вес, тогда как многоступенчатость осевых компрессоров – не проблема. Именно поэтому они нашли широкое применение не в авиации, а «на земле» в силовых установках, используемых в системах вентиляции, на газотранспортных магистралях и т.д. Из самолетов, на которых использовались реактивные двигатели с центробежными компрессорами, можно отметить HeS 3, которым был оснащен первый реактивный самолет, английский Power Jets W.1, который использовался в первом британском истребителе, Rolls-Royce Nene, ставшим в последствии прототипом советского РД-45. Использование таких двигателей было характерным для «зари» авиастроения, сейчас же практически везде используются двигатели с осевыми компрессорами.

Несмотря на то, что реактивные двигатели устанавливаются на большинстве современных самолетов, все же и они далеко не идеальные. Есть у них и недостатки: высокая себестоимость и повышенный расход топлива. Первый недостаток объясняется тем, что для изготовления отдельных элементов реактивного двигателя нужны сверхпрочные и жаростойкие материалы, которые бы могли работать при очень высоких давлениях и температурах. Что касается расхода топлива, он действительно выше, чем, например, у его ближайшего «родственника» турбовинтового двигателя, ну а от расхода топлива напрямую зависит стоимость перелетов. Поэтому в случаях, когда нет необходимости развивать сверхзвуковые скорости, самолеты оснащаются ТВД, что дает возможность снизить цены на перелет. В основном это пассажирские и грузовые самолеты, которые летают на большие расстояния. А вот в военной авиации практически всегда используются ТРД, ведь здесь не так важна экономия, как скорость.

Схема и принцип действия газотурбинного двигателя

Газотурбинным двигателем (ГТД) согласно стандарту 23851-79 (Авиационные газотурбинные двигатели. М.:Изд-во стандартов,1979.) называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина(рис.3.1).

Рис.3.1. Принципиальная схема газотурбинного двигателя:

к – компрессор; кс – камера сгорания; т – газовая турбина;

п – потребитель механической работы; Gт – расход топлива;

В-В – обозначение проходного сечения для воздуха на входе в

компрессор; К-К – то же на выходе из компрессора;

Г-Г – то же для газов на входе в турбину; Т-Т – то же для выхода из

Принцип действия ГТД следующий.

1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный (трение и теплообмен отсутствуют), то сжатие воздуха осуществляется в адиабатном процессе (

к

Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре:

2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе:

3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.

В процессе расширения газа в турбине тепловая энергия преобразуется в механическую работу на валу, примерно 2/3 которой направляется для вращения компрессора, а 1/3 направляется потребителю (воздушному винту, для вращения дополнительного компрессора, для вращения электрогенератора и т.п.).

4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона (рис.2.11, 2.12).

3.2.

Схема и принцип действия турбореактивного двигателя.

Турбореактивным двигателем (или двигателем прямой реакции) в соответствии с ГОСТ 23851-79 называют ГТД, в котором преобладающая часть энергии сгорания топлива преобразуется в кинетическую энергию струи (рис.3.2). ТРД имеет следующие основные элементы: входное устройство, компрессор, камеру сгорания, турбину и выходное устройство.

Во входном устройстве ТРД в полете воздушного судна (ВС) происходит предварительное сжатие набегающего на двигатель воздушного потока (скорость уменьшается, плотность, давление и температура возрастают). В зависимости от скорости полета ВС входные устройства разделяются на дозвуковые (

Рабочий процесс в компрессоре и камере сгорания ТРД совпадает с таким для ГТД. Расширение газа в турбине происходит до давления

равенства развиваемой турбиной мощности (

используется также для привода вспомогательных агрегатов обслуживающих двигатель систем.

В выходном устройстве ТРД осуществляется дальнейшее расширение газа (плотность, давление и температура уменьшаются, а скорость увеличивается). В зависимости от величины скорости истечения газа из реактивного сопла этого элемента ТРД они разделяются на дозвуковые (

Для иллюстрации рабочего процесса ТРД используются диаграммы «давление – удельный объём» и «энтальпия – энтропия» (рис.3.3).

Рис.3.2. Схема турбореактивного двигателя:

1 – входное устройство (воздухозаборник); 2 – компрессор;

3 – камера сгорания; 4 – турбина; 5 – выходное устройство

вх,в,к,г,т,с – обозначения контрольных сечений проточной

Рис.3.3. Изображение рабочего процесса ТРД в

Площадь фигуры

При истечении газа в атмосферу согласно третьему закону Ньютона образуется реактивная сила, называемая тягой ТРД – равнодействующая сил

давления и трения, действующих на внутренние поверхности двигателя. Величина тяги определяется по формуле Б.С. Стечкина:

где

Источник

История

В 1791 году английский изобретатель Джон Барбер предложил идею коловратного двигателя с поршневым компрессором, камерой сгорания и газовой турбиной. В 1909 году русский изобретатель Н. В. Герасимов запатентовал схему газотурбинного двигателя для создания реактивной тяги (турбореактивного двигателя). Патент на использование газовой турбины для движения самолёта получен в 1921 году французским инженером Максимом Гийомом.

Первый образец турбореактивного двигателя продемонстрировал английский инженер Фрэнк Уиттл 12 апреля 1937 года и созданная им небольшая частная фирма Power Jets. Он основывался на теоретических работах Алана Гриффита.

Первое полезное применение турбореактивного двигателя произошло в Германии на самолёте Heinkel He 178 с ТРД HeS 3. ТРД разработан Хансом фон Охайном почти одновременно с Уиттлом — первый пуск в сентябре 1937 года, изготовлялся фирмой Heinkel-Hirth Motorenbau. Лётчик Эрих Варзиц совершил первый полёт 27 августа 1939 года.

Принцип работы

Принцип работы ТВВД в общих чертах напоминает принцип работы двухконтурного турбореактивного двигателя, коим он в определенной степени и является. Поток воздуха попадает в первый контур – корпус двигателя. Там он попадает в осевой компрессор на его подвижные лопатки, которые сжимают его и вытесняют в направлении неподвижные лопаток, придающих ему осевое направление движения. Ряд неподвижных и подвижных лопаток – это ступень компрессора, и чем больше таких ступеней, тем выше степень сжатия воздуха.

После сжатия в компрессоре воздушный поток под давлением поступает в камеру сгорания, где находятся топливные форсунки и воспламенители. Сама камера сгорания может быть кольцевой или же состоять из нескольких отдельных жаровых труб. В ней воздух перемешивается с впрыснутым через форсунки топливом, образуя топливный заряд, который воспламеняется и сгорает, образуя расширенные газы.

Продукты горения в виде газов, находящихся под высоким давлением, выходят из камеры сгорания и попадают на лопасти турбины. Турбина, как и компрессор, имеет неподвижные и подвижные лопатки, только устанавливаются они наоборот: сначала газы проходят через неподвижные лопасти, выравнивая свое направление, а затем попадают на подвижные, отдавая им часть своей энергии. За счет воздействия газов на лопатки турбина вращается, приводя в движение компрессор, закрепленный с ней на одном валу. Как и компрессор, турбина состоит из нескольких ступеней, но их количество не превышает 5-ти.

В турбовинтовентиляторном двигателе кроме основной турбины есть еще одна, вращающая винтовентилятор, и эти турбины работают независимо одна от другой. Вал привода вентилятора обычно размещается внутри вала привода компрессора, при расположении винтовентилятора в передней части двигателя. Если винтовентилятор располагается в задней части ТВВД, то свободная турбина связана напрямую с винтами через корпус, что упрощает конструкцию. Турбина винтовентилятора размещена за основной турбиной и приводится в движение все теми же газами.

После прохождения турбин отработанные газы, все еще имеющие высокую скорость и температуру, выходят наружу через сопло, образуя реактивную тягу. Сопло в самом простом исполнении – это сужающаяся труба, но в некоторых случаях можно регулировать ее сечение и даже направленность выхода реактивного потока.

Виды компоновок турбовинтовентиляторных двигателей

На сегодняшний момент в мире встречаются ТВВД 2 основных компоновок, по расположению винтовентилятора.

а — винтовентилятор впереди; б — винтовентилятор в обтекателе; в — винтовентилятор сзади

В отличие от ТВРД ТВВД не имеет второго контура, как такового, то есть у него нет внешнего корпуса. Винтовентилятор может оснащаться обтекателем, который иногда ошибочно принимается за внешний корпус второго контура, но это совсем не обязательно – он может выполняться и полностью открытым. Сам винтовентилятор – это винт с укороченными лопастями сложной геометрической формы. Их саблевидная форма позволяет не просто пропускать воздух, создавая тягу, но и частично сжимать его и направлять на компрессор, а также уменьшать волновое аэродинамическое сопротивление. Двигатель может иметь один винтовентилятор или два, вращающихся в противоположные стороны. Разное направление вращения – это еще одна причина использования планетарного редуктора.

В сравнении с турбовинтовым двигателем турбовинтовентиляторный менее шумный, при его работе уровень вибраций гораздо ниже. Если же сравнить его с турбовентиляторным реактивным двигателем, то, благодаря высокой степени двухконтурности, он сжигает меньше топлива при одинаковой мощности (экономия составляет порядка 25-30%).

Типы основных камер сгорания и организация процесса горения в них

Основные камеры сгорания авиационных ГТД могут иметь разнообразные формы проточной части И различное конструктивное выполнение. Применяются практически камеры сгорания трех основных типов (рис. 9.3):

а — трубчатые (индивидуальные),

Трубчатая камера сгорания состоит из жаровой трубы, внутри которой организуется процесс горения, и корпуса (кожуха) 2. На двигателях обычно устанавливалось несколько таких камер. В современных авиационных ГТД трубчатые камеры сгорания практически не используются.

В трубчато-кольцевой камере все жаровые трубы заключены в общий корпус, имеющий внутреннюю и наружную поверхности, охватывающие вал двигателя. В кольцевой камере сгорания жаровая труба имеет в сечении форму кольца, также охватывающего вал двигателя.

Важная особенность этих камер состоит в том, что скорость потока воздуха или топливо-воздушной смеси в них (выбираемая с учетом требований К габаритным размерам двигателя) существенно превышает скорость распространения пламени при турбулентном диффузионном гореНИИ. И, если не принять специальных мер, пламя будет унесено потоком за пределы камеры сгорания

Поэтому организация процесса горения топлива в основных камерах ГТД основывается на следующих двух принципах, позволяющих обеспечить устойчивое горение топлива при больших значениях ос И высоких скоростях движения потока в них:

1. Разделение всего потока воздуха на две части

, из которых только одна часть (обычно меньшая) подается непосредственно в зону горения (где за счет этого создается необходимый для устойчивого горения состав смеси). А другая часть направляется в обход зоны горения (охлаждая снаружи жаровую трубу) в так называемую зону смешения (перед турбиной), где смешивается с продуктами сгорания, понижая в нужной мере их температуру;

2. Стабилизация пламени в зоне горения

путем создания в ней зоны обратных токов, заполненной горячими продуктами сгорания, непрерывно поджигающими свежую горючую смесь.

Конкретные формы реализации этих мероприятий могут быть различными. На рис. 9.4 показана схема одного из вариантов трубчато-кольцевой камеры сгорания. Камера состоит из жаровой трубы 1 и корпуса 2. В передней части жаровой трубы, которую называют фронтовым устройством, размещаются форсунка 3 для подачи топлива и лопаточный завихритель 5. Для уменьшения скорости воздуха в камере на входе в нее (за компрессором) выполняется диффузор 4, благодаря которому скорость воздуха перед фронтовым устройством обычно не превышает 50 м/с.

Устройство ПВРД

Конструкция ПВРД, как было отмечено выше, отличается лаконичностью и минимальным количеством составляющих элементов. В упрощенном варианте он состоит из диффузора, камеры сгорания и сопла, а также вспомогательных систем подачи топлива и зажигания, которые в некоторых моделях могут и отсутствовать. На первый взгляд может показаться, что собрать такой двигатель можно и самостоятельно, ведь в нем нет ничего сложного, но на самом деле это не совсем так. Эффективность работы ПВРД зависит от множества мелких нюансов, в том числе и от формы, геометрии и размеров диффузора и сопла. Эти параметры определяют тип ПВРД, его мощность и сферу применения.

Результирующая тяга

Результирующей тягой турбореактивного двигателя дают:

где:

Если скорость самолета равна звуковой скорости, носик, как говорят, наполняют. Если носик наполняют, давление в выходном самолете носика больше, чем атмосферное давление, и дополнительные условия должны быть добавлены к вышеупомянутому уравнению, чтобы составлять толчок давления.

Уровень потока топлива, входящего в двигатель, очень небольшой по сравнению с уровнем потока воздуха. Если вклад топлива к толчку общего количества носика проигнорирован, результирующая тяга:

Скорость самолета должна превысить истинную скорость полета самолета, если должен быть чистый передовой толчок на корпусе. Скорость может быть вычислена термодинамически основанная на адиабатном расширении.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector