Типы свинцово-кислотных аккумуляторов

Типы АКБ

В зависимости от состава электролита, материалов электродов и особенностей конструкции можно выделить три распространённых типа аккумуляторов.

Свинцово-кислотные

Эти АКБ имеют самую долгую историю популярности в качестве автономных источников питания. Большинство таких батарей изготовлены из свинцовых пластин или сеток, где одна из решёток (положительный электрод) покрыта диоксидом свинца в кристаллической форме. Электролит, состоящий из серной кислоты, участвует в реакциях свинца и диоксида свинца с образованием сульфата свинца. Перемещение ионов последнего образует ток разряда. Заряд происходит при помощи восстановления током заряда диоксида свинца на катоде.

Этот тип батарей был востребован на протяжении более чем сотни лет благодаря следующим особенностям:

  • широкому диапазону возможностей как при производстве сильных, так и слабых токов;
  • надёжностью в течение сотен циклов в присутствии контроля заряда;
  • относительно низкой стоимости (свинец дешевле в пересчёте на ёмкость чем никель, кадмий, литий или серебро);
  • большой срок годности при хранении для перезаряжаемого устройства;
  • высокое напряжение единичной ячейки;
  • простотой изготовления (литьё, сварка, прокатка).

Щелочные батареи

В этом типе батарей электрическая энергия генерируется в результате химических реакций в щелочном растворе с использованием различных электродных материалов.

Наиболее известные из них:

  • Никель-кадмиевые. Способны выдавать исключительно высокие токи, перезаряжаться сотни раз, терпимы к ошибкам в обслуживании. Но, в сравнении со свинцово-кислотными, тяжелы и имеют ограниченную плотность энергии. Их долговечность напрямую зависит от полной разрядки в каждом цикле. Если её не делать, элементы проявляют так называемый эффект памяти, который выражается в снижении их ёмкости. Используются широко для запуска авиадвигателей, систем аварийного жизнеобеспечения и в сочетании с источниками солнечной энергии.
  • Никель-цинковые. Самые привлекательные, с точки зрения их развития. Если их жизненный цикл будет значительно продлён, системы такого рода могут стать жизнеспособной заменой для никель-кадмиевых и свинцово-кислых батарей.
  • Никель-железные. Могут обеспечить тысячи циклов, но не перезаряжаются эффективно. При пополнении ёмкости заметно выделяют тепло и потребляют много электроэнергии.
  • Никель-водородные. Были изобретены прежде всего для космической программы США. Водород в таких системах служит активным анодным материалом. Заменяют собой никель-кадмиевые во многих областях, благодаря высокой мощности на единицу объёма и терпимости к качеству обслуживания. Используются в электрических транспортных средствах.
  • Цинково-марганцевые. Применяются в системах, не нуждающихся в большом количестве электричества. Высокая плотность энергии и низкая стоимость этих батарей способствует дальнейшей инженерной работе над их усовершенствованием.
  • Серебряно-цинковые. Одни из самых дорогих. Используются там, где высокая плотность мощности, малый вес и малый объём имеют решающее значение: в специальных транспортных средствах и портативных радиолокационных узлах.

Литиевые перезаряжаемые устройства

К ним относятся аккумуляторы с литиевым анодом или использованием в электрохимической реакции ионов лития. 

Благодаря высокой плотности накапливаемой энергии и ничтожному саморазряду, этот тип АКБ популярен как источник питания потребительской электроники. Главный недостаток литиевых батарей — риск неожиданного возгорания от перегрева. 

Литий полимерные батареи — более совершенные в своём классе. В них вместо жидкого электролита используют твёрдый полимерный. Эти батареи легче обычных литий ионных, но из-за высокой цены не смогли полностью их заменить.

Базовые понятия о работе аккумуляторов

2.1 Базовые понятия для свинцово-кислотных аккумуляторов

Рис 3: Состояния свинцово-кислотного аккумулятора

Полностью заряженный элемент имеет разность потенциалов между анодом и катодом около 2 В. Во время разряда электроны проходят через внешнюю электрическую цепь, одновременно химические реакции внутри аккумулятора обеспечивают баланс зарядов . На рис. 3 показаны химические состояния полностью заряженного и полностью разряженного свинцово-кислотного аккумулятора.

Свинцово-кислотные аккумуляторы могут быть разделен на 2 категории: с жидким электролитом и герметизированные (SLA или VRLA). По своей химии эти категории идентичны (см. рис.3).  Различия — в технологии исполнения, которая влияет и на эксплуатационные характеристики. Аккумуляторы с жидким электролитом требуют следующих 3 условий, которые не требуются герметизированным аккумуляторам:

  1. Определенное положение для предотвращения вытекания электролита
  2. Вентилируемое помещение для удаления газов, образующихся во время заряда и разряда
  3. Регулярное обслуживание электролита.

Ввиду этих различий, необходимо учитывать сложность и стоимость технического обслуживания АКБ с жидким электролитом, которая может нивелировать их более низкую стоимость. Герметизированные аккумуляторы делятся на 2 группы: гелевые и AGM (Absorbed Glass Mat). Они различны по состоянию электролита. В гелевых аккумуляторах в электролит добавлено загущающее вещество, которое превращает электролит в гель. В AGM аккумуляторе используется стеклянная «губка» для связывания жидкого электролита.

Внутри каждой категории свинцово-кислотных аккумуляторов различаются аккумуляторы “глубокого циклирования” и аккумуляторы для “буферного режима” с небольшой глубиной разряда. «Буферные» герметизированные аккумуляторы обычно используются в автомобилях в качестве стартерных — они должны выдавать мощные импульсы энергии в течение короткого времени. В стационарных системах электроснабжения применяются аккумуляторы «глубокого разряда», которые обычно разряжаются относительно небольшими токами, но в течение длительного времени. 

2.2 Литиевые аккумуляторы

Концепция литий-ионных аккумуляторов была разработана в 1970-х годах. Широкое распространение они получили в 1990-х годах. Принцип работы заключается в том, что ионы лития курсируют туда-сюда между анодом и катодом во время заряда и разряда. На рис.4 показано устройство разновидности литий-ионного оаккумулятора  LiCoO2.

Рис 4: Реакции в литий-ионном аккумуляторе

Особенности химических процессов на аноде, катоде и в электролите влияют на эффективность работы аккумулятора. Также влияет конструкция элемента литий-ионного аккумулятора. Наиболее часто производитель меняет форму и состав катода:  они могут быть LFP, NCM, NCA, Cobalt, или Manganese.  Более 90% литиевых анодов состоят из графита; кремний и титан используются гораздо реже.

Электролит обычно находится в жидкой форме, но в «литий-полимерных» аккумуляторах электролит находится в абсорбированном виде в полимерной мембране. Это позволяет для ограничения объема аккумулятора использовать «мешочек»  вместо металлического корпуса, который обычно используется с жидким электролитом в цилиндрических и призматических элементах.

Несмотря на различия в химических процессах, литий-ионные аккумуляторы могут быть разделены на 2 групы: литий-железо-фосфатные (LFP, LiFePO4) и металл-оксидные (NCM, NCA, Cobalt, Manganese — Оксид марганца лития (LiMn2O4) и оксид лития никеля и марганца кобальта (LiNiMnCoO2)). БатареиLiMn2O4и LiNiMnCoO2 относятся к литиевым батареям среднего размера по размеру, весу, безопасности, сроку службы и стоимости.

В таблице 1 показаны различия между этими 2 химическими процессами. Значения отражают среднюю величину, возможны флуктуации в ту или другую сторону.

Таблица 1: Сравнение литий-ионных технологий аккумуляторов

RC литий-полимерные батареи (RC LiPo). LiPo — это самые маленькие, самые дешевые, легкие и мощные литиевые батареи. К их недостаткам относятся короткая продолжительность жизни и склонность к возгорания в гигантские огненные шары, поэтому мы в данной статье их не рассматриваем.

Все литий-ионные аккумуляторы выдерживают глубокий разряд. Срок службы аккумулятора существенно возрастает, если глубина разряда не более 80% от номинальной емкости.

Кислотные против гелевых АКБ

Свинцово-кислотные жидкостные аккумуляторы пользуются огромной популярностью ещё с советских времён. И продолжают активно продаваться и устанавливаться на авто до сих пор.

Но в настоящее время в лидеры вырываются гелевые АКБ. Во многом за счёт того, что они не нуждаются в обслуживании, эффективно служат и отлично подходят для современных автомобилей, наполненных электроникой.

Чтобы понять разницу между двумя рассматриваемыми типами источников питания, необходимо разобраться в их особенностях.

Кислотные жидкостные АКБ представляют собой пару свинцовых электродов, заключённых в пластиковый корпус. Пластины-электроды покрываются специальной жидкостью. А именно электролитом. Электроды разделены между собой изоляторами. Их покрывают специальными составами, защищающими свинец от быстрого разрушения. Ранее это была обычная сурьма, а затем начали использовать цинк, серебро и другие армирующие компоненты. При подаче питания на батарею от генератора или зарядки, минусовой электрод начинает восстанавливаться, а положительный окисляется. Электрохимическая реакция, возникающая за счёт взаимодействия электродов в кислотной среде (вода с серной кислотой) провоцирует зарядку АКБ. При обратной ситуации идёт разрядка.

Устройство гелевых аккумуляторов практически аналогичное. Здесь тоже применяется пара разнозаряженных электродов, изоляторы, пластиковый корпус и пр.

Но главная отличительная особенность заключается в электролите. Он не жидкий, а гелеобразный.

Ещё стоит добавить, что гелевые АКБ бывают только необслуживаемыми, в то время как жидкостные могут выпускаться в нескольких вариантах исполнения:

  • обслуживаемые;
  • малообслуживаемые;
  • необслуживаемые.

Некоторые отличительные особенности ведут к тому, что у каждого из представленных вариантов аккумуляторных батарей формируются свои сильные и слабые стороны.

Сейчас гелевыми аккумуляторами активно называют 2 типа батарей. Маркируются они как GEL и AGM. При этом между ними есть определённая разница, не позволяющая делать понятия GEL и AGM аккумулятора тождественными. Это разные АКБ.

Принцип действия аккумуляторов

Принцип действия аккумулятора основан на образовании разности потенциалов между двумя электродами, погруженными электролит. При подключении нагрузки (электротехнических устройств) к клеммам аккумулятора в реакцию вступают электролит и активные элементы электродов. Происходит процесс перемещения электронов, который, по сути, и является электротоком.

При разряде аккумулятора (подключении нагрузки) губчатый свинец анода выделяет положительные двухвалентные ионы свинца в электролит. Избыточные электроны перемещаются по внешней замкнутой электрической цепи к катоду, где происходит восстановление четырехвалентных ионов свинца до двухвалентных.

Ионы кислорода от диоксида свинца катода и ионы водорода из электролита соединяются, образуя молекулы воды. Поэтому плотность электролита понижается.

При заряде происходят обратные реакции. Под воздействием внешнего напряжения ионы двухвалентного свинца положительного электрода отдают по два электрона и окисляются в четырехвалентные. Эти электроны движутся к аноду и нейтрализуют ионы двухвалентного свинца, восстанавливая губчатый свинец. На катоде, путем промежуточных реакций, снова образуется двуокись свинца.

Из видео Вы сможете более подробно узнать, как работает аккумулятор.

Устройство тяговых АКБ

По устройству тяговые источники питания в чем-то схожи со стартерными АКБ. В них также присутствуют положительные и отрицательные пластины, они, как и стартерные, работают по принципу преобразования химической энергии в электрическую. Но на этом схожесть заканчивается.


Устройство тяговой батареи на примере батареи производителя Sunlight

Главное отличие заключается в массе пластин, которая естественным образом трансформируется в массу и объем всей батареи. Тяговая аккумуляторная батарея 24V емкостью 75 Ач может превышать по размерам стартерную 12В АКБ в 40–50 раз. Объясняется это просто – пластины большего размера и массы позволяют значительно продлить срок эффективной эксплуатации АКБ с большим количеством циклов зарядки.

По типу электролита различают свинцово-кислотные и щелочные аккумуляторы. Щелочные АКБ, которые были очень распространены раньше, сейчас мало используются из-за их высокого ценового диапазона, а вот кислотные батареи в результате развития технологий находят все большее применение в электроприводной технике.

Различают три основных разновидности кислотных АКБ.

Аккумуляторы WET

Устройства традиционного типа с электролитом, представляющим собой растворенную дистиллированной водой серную кислоту в жидком – свободном виде. В зависимости от технологического способа производства электродов подразделяются на три основных класса:

  1. Аккумуляторы с обычным техобслуживанием. Пластины таких аккумуляторов изготавливаются из сплава свинцово-сурьмянистого состава, им требуется периодическая проверка уровня электролита и пополнение его дистиллированной водой.
  2. АКБ с ограниченным техническим обслуживанием. Изготавливаются по гибридной технологии: плюсовые пластины имеют свинцово-сурьмянистый состав с пониженным содержанием сурьмы, а отрицательные изготавливаются из сплава свинца и кальция. Процесс зарядки тяговых аккумуляторных батарей такого типа сопровождается меньшим испарением воды из электролита, поэтому восстановление уровня требуется только при эксплуатации в тяжелых условиях повышенных температур и нагрузок.
  3. В аккумуляторах SM (маркируемых еще как MF), не требующих обслуживания, электроды изготавливаются из свинцовых сплавов, которые не содержат сурьму. Положительные пластины могут иметь свинцово-кальциево-оловянный либо свинцово-кальциево-оловянно-серебряный состав, отрицательные производятся из свинцово-кальциевого сплава.

Источники WET типа применяются по большей части в качестве аккумуляторных батарей для электропогрузчиков. Заряжать тяговые аккумуляторы допускается исключительно под вытяжкой.

Аккумуляторы VRLA

Новое поколение тяговых аккумуляторов, классифицируемых в международной терминологии как VRLA, позволяет в значительной степени сократить не только занимаемое источником питания пространство. Свинцово-кислотные батареи, созданные на основе технологии VRLA, сохраняют все характеристики, присущие тяговой разновидности аккумуляторов, имея при этом массу и габариты, сопоставимые с аналогичными параметрами стартерных источников.


Аккумулятор Delta VRLA для мототехники

Тяговые аккумуляторные батареи для погрузчиков нетребовательны к габаритам и массе, скорее даже наоборот. А вот батареи для питания лодочных моторов, гибридных авто должны иметь большой запас емкости при минимальной массе и геометрических размерах. Так свинцово-кислотная тяговая батарея 65 Ач имеет геометрические размеры всего 278х175х190 мм.

По клапанно-регулируемой технологии выпускаются два типа источников питания:

  1. С использованием технологии AGM. Плюсовые пластины таких устройств изготавливаются из сплава свинца с кальцием и оловом, отрицательные – из свинцово-кальциевого. Изолирующим материалом, одновременно удерживающим в своем объеме кислый электролит, выступает поглощающее стекловолокно.
  2. С использованием гелевой технологии – типа GEL. Отличие с аккумуляторами AGM заключается в агрегатном состоянии электролита. Как следует из названия, кислая электролитная среда таких батарей переведена с применением гелеобразователей в состояние геля.

Принцип функционирования аккумуляторов VRLA имеет в своей основе метод кислородно-водородной рекомбинации. Незначительное избыточное давление, создающееся в корпусе устройства, нивелируется работой клапана.

Типы автомобильных аккумуляторов

Типы аккумуляторов бывают обслуживаемые и необслуживаемые.

У обслуживаемого аккумулятора можно:

  • физически просто выкрутить пробки с банок;
  • визуально определить уровень электролита и состояние свинцовых пластин;
  • замерить плотность, кипение электролита при заряде;
  • при необходимости добавить дистиллированную воду.

Если говорить языком автомобилиста – «добраться до внутренностей». Мы можем делать с аккумулятором все что захотим.

Но обслуживаемые АКБ имеют ряд недостатков:

  • из-за негерметичности батареи в процессе эксплуатации электролит может выкипать, что приводит к снижению его уровня и, как следствие, падает ёмкость, итог – проблемы с запуском автомобиля;
  • испарение воды приводит к повышению плотности электролита, следствием чего является разрушение пластин;
  • необходимо постоянно контролировать уровень электролита;
  • при нагревании электролита на внешней крышке аккумулятора (в местах расположения пробок) образуется специфический белый налет, что может привести к замыканию клемм и преждевременному частичному разряду.

Все эти недостатки – проблемы прошедших лет. Изобретатели долгие годы трудились над решением этих проблем и, наконец, нашли выход из положения – сделали аккумулятор необслуживаемым.

Необслуживаемый АКБ.

Отличительной чертой является отсутствие пробок на верхней крышке и как бы вы не хотели заглянуть внутрь – ничего не получится. Он стал полностью герметичным.

Какие достоинства у данного типа?

  • при нагревании электролита испаряемая жидкость в виде конденсата оседает на внутренних стенках батареи и стекает вниз.
  • АКБ можно кантовать как угодно, не боясь пролива электролита.
  • решена главная проблема – пластины всегда находятся в электролите.

Но без недостатков не бывает ни одного устройства.

На необслуживаемых батареях перемычки между банками расположены внутри корпуса. Проверить напряжение на банках практически невозможно.

На необслуживаемые аккумуляторы начали устанавливать так называемые «клапаны аварийного сброса давления». Срабатывает он в экстренных случаях, когда происходит сильный перезаряд. Наружу выходит часть испаряемого электролита, но вот обратно добавить его в батарею возможность отсутствует напрочь. Несколько перезарядов и как итог – батарея теряет ёмкость.

Электропитающие устройства и линейные сооружения автоматики, телемеханики и связи железнодорожного транспорта

  • Введение
  • Классификация воздушных линий
  • Типовые профили опор ВЛ, ВСЯ СЦБ и воздушных линий связи
  • Материалы и арматура воздушных линий
  • Деревянные опоры, железобетонные приставки и железобетонные опоры
  • Основные типы опор воздушных линий СЦБ и связи
  • Оборудование высоковольтных линий автоматики и телемеханики
  • Оборудование воздушных линий связи
  • Устройство удлиненных пролетов, пересечений и переходов
  • Заземления в устройствах автоматики, телемеханики и связи
  • Типы и конструкции заземляющих устройств
  • Строительство воздушных линий
  • Техническое обслуживание и ремонт воздушных линий
  • Механизация работ при строительстве и ремонте воздушных линий
  • Техника безопасности при работах на воздушных линиях
  • Назначение и классификация кабельных линий
  • Конструкция кабелей
  • Кабели для устройств автоматики и телемеханики
  • Железнодорожные кабели связи
  • Оборудование, арматура и материалы кабельных линий
  • Строительство кабельных линий
  • Монтаж силовых электрических кабелей
  • Монтаж силовых и контрольных кабелей. Паспортизация кабельных линий
  • Механизация кабельных работ
  • Техническое обслуживание и ремонт кабельных линий
  • Техника безопасности при работах на кабельных линиях
  • Влияние электрических железных дорог и линий электропередачи на воздушные и кабельные линии
  • Средства защиты устройств автоматики, телемеханики и связи от опасных и мешающих влияний железных дорог и линий электропередачи
  • Защита полупроводниковых приборов от перенапряжений
  • Воздействие молнии на устройства автоматики, телемеханики и связи. Приборы защиты
  • Защита устройств автоматики, телемеханики и связи от атмосферных перенапряжений
  • Защита кабелей от коррозии
  • Генераторы постоянного тока
  • Реакция якоря и коммутация тока
  • Типы генераторов и их характеристики
  • Общие сведения о двигателях постоянного тока
  • Электродвигатели постоянного тока и их характеристики
  • Однофазный и трехфазный трансформаторы
  • Автотрансформаторы и дроссели насыщения
  • Трансформаторы железнодорожной автоматики и телемеханики
  • Путевые дроссель-трансформаторы
  • Асинхронные электродвигатели
  • Синхронные генераторы
  • Первичные химические источники тока
  • Свинцовые аккумуляторы
  • Электролит и химические процессы в свинцовых аккумуляторах
  • Электрические характеристики свинцовых аккумуляторов
  • Аккумуляторные батареи
  • Правила эксплуатации и способы устранения неисправностей свинцовых аккумуляторов
  • Щелочные никепь-железные и никель-кадмиевые аккумуляторы. Аккумуляторные помещения
  • Электрические вентили и выпрямительные устройства
  • Классификация схем выпрямления переменного тока и их параметры
  • Влияние характера нагрузки на работу выпрямительных схем
  • Выпрямители, применяемые в устройствах автоматики и телемеханики
  • Электромагнитные и полупроводниковые преобразователи
  • Особенности электроснабжения устройств
  • Энергоснабжение устройств автоблокировки
  • Системы питания
  • Электропитание устройств переездной сигнализации и полуавтоматической блокировки
  • Техническое обслуживание устройств электропитания на перегонах и станциях
  • Питающие пункты устройств автоматики и телемеханики
  • Расчеты питающих устройств сигнальной точки автоблокировки
  • Электропитание устройств автоматики и телемеханики крупных станций
  • Унифицированная щитовая установка электропитания устройств централизации на крупных станциях при безбатарейной системе питания
  • Электропитание устройств электрической централизации малых станций
  • Устройства электропитания электрической централизации промежуточных станций
  • Электропитающие установки безбатарейной и батарейной систем питания ЭЦ промежуточных станций
  • Расчеты электропитающих устройств электрической централизации
  • Автоматизированные дизель-генераторные установки и резервные электростанции

Золотые правила

При эксплуатации батарей нужно соблюдать следующие основные правила:

• Ни в коем случае не оставлять батарею в разряженном состоянии. После каждого разряда необходимо сразу ставить батарею на подзарядку, иначе начнется необратимый процесс сульфатации пластин. Это приводит к снижению емкости и срока службы батарей.

• Разряжать батарею не более чем на 80% (для гелевых АКБ – 60%). Как правило, за это отвечает датчик разряда, установленный на машине, однако его поломка, отсутствие или неправильная настройка может также привести к сульфатации пластин, перегреву батарей при заряде и в конечном итоге сокращению срока их службы.

• В АКБ можно доливать только дистиллированную воду. В обычной воде содержится множество примесей, оказывающих негативное влияние на аккумуляторную батарею. Долив электролита в АКБ для увеличения плотности запрещен: во-первых, это не даст прироста емкости, а во-вторых, вызовет необратимую коррозию пластин.

Чистка АКБ

Чистота абсолютно необходима не только для хорошего внешнего вида батареи, но в значительно большей степени – для предотвращения несчастных случаев и ущерба, уменьшения срока службы, а также для того, чтобы АКБ находилась в состоянии, пригодном к эксплуатации. Аккумуляторные корпуса, ящики, изоляторы необходимо чистить для обеспечения требуемой изоляции элементов по отношению один к другому, по отношению к земле («массе») или внешним проводящим частям. Кроме того, очистка позволяет избежать коррозионных повреждений и возникновения блуждающих токов. Вне зависимости от времени работы и места на АКБ неизбежно оседает пыль.

Небольшое количество электролита, выступающего из батареи во время заряда после достижения напряжения газообразования, образует более-менее токопроводящий слой на крышках элементов или блоков, по которому протекают блуждающие токи. Результатом является повышенный и неоднородный саморазряд элементов или блоков. Это одна из причин того, почему операторы электрических машин жалуются на упавшую емкость батареи после того, как техника не эксплуатировалась в течение выходных дней.

Аккумуляторный журнал и организация работы

При использовании парка электропогрузчиков целесообразно закреплять за каждым погрузчиком свои АКБ. Для этого их нумеруют: 1а, 1б, 2а, 2б и т. д. (батареи с одинаковым номером используются на одном и том же погрузчике). После этого заводят журнал, в котором о каждой АКБ ежедневно отражается информация, проиллюстрированная на примере.

Пример 1
Номер батареи Установлена на погрузчик Поставлена на заряд
Дата Время Плотность (средняя по трем элементам выборочно) Показания счетчика, машино-ч Дата Время Плотность (средняя по трем элементам выборочно) Показания счетчика, машино-ч
и т.д.

Таким образом, с помощью данного мероприятия можно избежать использования недозаряженных батарей, а также спрогнозировать и спланировать замену АКБ до полного выхода ее из строя. Помимо этого по каждой батарее целесообразно вести еще один журнал, в котором раз в месяц отражается информация о батарее, перечисленная в примере 2. Эти данные являются основным источником информации для сервисной службы, поэтому зачастую ведение такого журнала является обязательным условием гарантийного обслуживания. За все аккумуляторное хозяйство должен быть ответственен один или два (в случае двухсменной работы) человека. В их обязанности по данной зоне ответственности должны входить прием и выдача АКБ, их обслуживание и заряд, ведение аккумуляторных журналов, прогнозирование выхода АКБ из строя.

Что лучше выбрать

Теперь остаётся ответить на главный вопрос: какой аккумулятор для авто в итоге лучше — гелевый или кислотный.

Оба аккумулятора работают на основе свинцовых пластин и электролита. В состав электролита входят дистиллированная вода и серная кислота. В случае с GEL АКБ дополнительно используется загуститель, который и обеспечивает соответствующую консистенцию.

Сказать однозначно, какой вариант АКБ будет лучше, сравнивая гелевый и кислотный источники питания, сложно. Всё зависит от конкретных задач, условий, предъявляемых требований и потребностей автомобилиста.

Если брать за основу хороший гелевый вариант, а также сопоставить ему продвинутый тип АКБ с жидким электролитом, они не будут существенно отличаться по своим характеристикам и возможностям.

Потому автомобилисту рекомендуется узнать, какой именно аккумулятор лучше использовать конкретно на его транспортном средстве. Соответствующая информация указана в руководстве по эксплуатации.

Принято считать, что GEL АКБ предпочтительнее устанавливать на современные иномарки с большим количеством электроники. Они служат дольше и эффективнее, требуют минимума внимания к себе. Что же касается простых жидкостных батарей обслуживаемого типа, то это прерогатива недорогих, бюджетных иномарок, основной массы отечественных авто.

Но технологии не стоят на месте. Сейчас есть масса АКБ, где используется жидкий электролит. Но при этом батареи становятся необслуживаемыми, они способны навязать борьбу GEL аккумуляторам и по некоторым параметрам даже их превзойти.

Каждый автомобилист сам должен для себя решить, какой аккумулятор ему лучше подойдёт, поскольку кислотный и гелевый типы АКБ одинаково хорошо подходят для разных ситуаций. Батареи на основе геля не всегда приоритетный вариант, и переплачивать за него не всем стоит.

Всем спасибо за ваше внимание! Подписывайтесь, оставляйте комментарии, задавайте актуальные вопросы!

Как происходит зарядка аккумуляторной батарей?

Не забывайте перед уходом из автомобиля выключать все электроприборы, иначе можете прийти к авто, а аккумулятор сел. Например, включенные габариты полностью разрядят аккумулятор примерно за 30 часов.

Зарядка автомобильного аккумулятора осуществляется двумя разными способами:

1. Аккумулятор стоит непосредственно в автомобиле, двигатель работает и генератор в рабочем состоянии, зарядка идет автоматически (чем больше держите обороты, а электроприборы по возможности не включаете, тем быстрее идет зарядка).

2. Вынимается аккумулятор и берется зарядное устройство, подключаются контакты минус к минусу, плюс к плюсу. Чем меньше зарядный ток, тем больше заряда получит батарея. Только не перегибайте, а то аккумулятор не «закипит» и через «месяц». Далее читаем инструкцию зарядного устройства, т.к. сейчас зарядное устройство – это настоящий миникомпьютер с кучей кнопок и свойств. Зарядных устройств великое множество, и тяжело выделить кого либо из производителей, отличаются они друг от друга, как ценой так и свойствами (сглаживание поступающего напряжения, гашение «скачков»).

Аккумулятор считается полностью заряженным, когда электролит «закипел». В среднем зарядка идет около 8-10 часов, но время может сильно варьироваться, все зависит от изначального заряда батареи. После закипания нужно подождать минут 10-15 и отключить зарядное устройство, после чего аккумулятор считается полностью заряженным.

После зарядки аккумулятора желательно его тщательно промыть и просушить, т.к. на корпус батареи может попасть кислота или грязь. Это может привести к своевременному разряду АКБ, т.к. его корпус пропускает напряжение. Это можно легко проверить — нужно измерить напряжение крышки аккумулятора. Если оно отлично от нуля, то батарея пропускает напряжение и ее нужно промыть раствором соды. Только следите, чтобы данный раствор не попал в банки аккумулятора.

Электролит

Электролит в тяговых аккумуляторах играет ключевую роль. Заливают его один раз, при вводе в эксплуатацию, и от его качества зависит стабильность эксплуатации батареи на протяжении ее срока службы (именно поэтому лучше приобретать батареи, залитые и заряженные в заводских условиях). При эксплуатации АКБ во время заряда в результате электролиза вода разлагается на кислород и водород (визуально это выглядит как кипение электролита), вот почему требуется периодически доливать воду. Уровень электролита, как правило, определяют по меткам min и max на заливной пробке. Кроме того, существует система автоматического долива воды Aquamatic, которая существенно ускоряет этот процесс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector