Классификация, механизмы и системы двигателя, основные конструктивные параметры

Содержание:

Классификация двигателей

Моторы компании выпускаются в широком диапазоне мощности и условно делятся на две категории: малой и средней, а также высокой мощности.

К первой группе относятся агрегаты серий B3.3,ISF2.8, QSB 4.5,ISF 3.8, QSB6.7, QSL, QSM, QSC, LTAA, QSX15 и другие, а ко второй —KTA19, QSK15, QST 30, QSK19,QSK60, QSK7, KTA38, QSK45, KTA 50.

Малой и средней мощности

В эту группу входят моторы мощностью от 49 до 500 лошадиных сил. Для примера рассмотрим несколько популярных моделей силовых агрегатов.

ISF 2.8

Мощный мотор, применяемый на грузовых и пассажирских микроавтобусах, а также грузовиках с небольшим тоннажем. В России двигатель Камминз 2.8 устанавливается на автомобилях Газель Бизнес. Силовой агрегат имеет мощность в 120 л. с при крутящем моменте в 297 Н*м. 

Конструктивно этот мотор Камминз представляет собой 4-цилиндровый агрегат, имеющий размеры 60,6х64,1х63,2 см и сравнительно небольшой вес. Благодаря небольшим габаритным размерам он легко вмещается в подкапотное пространство и без проблем подключается к остальным агрегатам. К особенностям мотора относится наличие электромагнитных форсунок и электронная система впрыска. Силовой агрегат соответствует категории Евро-3. Средний расход оставляет около 8,5 л на «сотню».

ISF 3.8
Не менее востребованным является двигатель Камминз 3.8, который подходит для легких коммерческих машин, грузовиков, пикапов и фургонов. Является одним из наиболее легких и мощных в своем классе.

Оборудован продуманной топливной системой высокого давления и турбированным нагнетателем с перепускным клапаном. Соответствует требования Евро 3 и Евро 4. В последнем случае двигатель Commins 3.8 может иметь меньшую производительность. Устанавливается на машинах Газ 33106, Газ3309, Паз 3227-05 и других.

Характеристики:

 Характеристики  Cummins ISF 2.8  Cummins ISF 3.8
 Мощность, л.с.  120  141-168
 Вес, кг  214  280
 Степень сжатия  16,5  17,2
 Расход топлива, л/100км  8,5  9,7
 Ресурс, тыс.км  500  500

Большой мощности

В эту группу входят моторы с мощностью от 500 до 3500 лошадиных сил. Рассмотрим несколько вариантов.

QSK78

Дизельный 18-цилиндровый мотор, сочетающий в себе производительность и высокую надежность. Здесь предусмотрена продуманная топливная система высокого давления и специальные системы защиты, обеспечивающие быстрый поиск неисправности. К особенностям стоит отнести чугунные поршни, низкотемпературное дополнительное охлаждение и интегрированную систему G-Drive. В отличие от менее мощных двигателей ComminsISFмоторы серии QSK ставятся на карьерные самосвалы, ж/д технику и даже морские суда. Соответствует категории Евро-2.

QSK15

Надежный 6-цилиндровый мотор, отличающийся хорошими эксплуатационными характеристиками, долговечностью и простотой применения. Имеет жидкостную систему охлаждения и механическую систему управления. Предназначен для работы в тяжелых условиях. Здесь на 30% меньше деталей, что повышает надежность оборудования. Впрыск топлива осуществляется под давлением 1900 бар для более быстрого и экономичного сгорания горючего. Устанавливается на карьерном самосвале Белаз 75450, тракторах, трубоукладчиках, экскаваторе Хендай R800LCA7A.

Характеристики:

 Характеристики  Cummins QSK 78  Cummins QSK 15
 Мощность, л.с.  3500  665
 Вес, кг  10800  1658
 Степень сжатия  14,5  17
 Ресурс, тыс.км  35  35

Как видно, маломощные и средние двигатели Камминз ставятся на Газель, Камаз, Маз и другую среднетоннажную технику. Что касается агрегатов высокой мощности, они применяются на карьерных самосвалах, морских судах, на ж/д технике и т. д.

Как устроен силовой агрегат

Конструктивно двигатели Камминз представляют собой 4-тактный мотор на дизельном топливе, имеющий в составе несколько основных компонентов:

ГРМ (газораспределительный механизм). Необходим для подачи в цилиндры готовой смеси и отвода газов.
КШМ (кривошипно-шатунный механизм). Преобразует движение поршня во вращение коленвала и тем самым обеспечивает движение автомобиля. Со состав КШМ входят цилиндры, сам коленвал, головка блока цилиндров, поршни и т. д.
Форсунки (инжекторы). Подают горючее в камеру сгорания в том объеме, который необходим и указывается электронным блоком управления.

Питающая система. Формирует нужную пропорцию горючего для подачи в цилиндры.  Отметим, что мотор Камминз имеет систему питания двигателя, которая очень похожа на классический бензиновый ДВС с электронным впрыском.
Охлаждение и смазка. В двигателях Cummins применяется стандартная охлаждающая и смазывающая системы.

Применение турбированного наддува позволяет поднять мощность мотора на 20-40 процентов в сравнении с классическими «атмосферниками». С другой стороны, это ведет к росту рабочей температуры двигателя и повышению нагрузки на систему охлаждения.

Классификация двигателей внутреннего сгорания

назначению – транспортные и стационарные;

способу осуществления рабочего цикла – четырехтактные и двухтактные;

способу смесеобразования – с внешним смесеобразованием – карбюраторные или газовые и с внутренним смесеобразованием – дизели;

способу воспламенения рабочей смеси – с принудительным воспламенением от электрической искры (карбюраторные), с воспламенением от сжатия (самовоспламенение) – дизели;

виду применяемого топлива – карбюраторные, работающие на бензине, дизели, работающие на тяжелом дизельном топливе, и двигатели, работающие на сжатом или сжиженном газе;

числу цилиндров – одноцилиндровые и многоцилиндровые (двух-, трех-, четырех-, шести-, восьмицилиндровые и т.д.);

расположению цилиндров – однорядные с вертикальным расположением цилиндров в один ряд, однорядные с наклоном оси цилиндров от вертикали на 20-40 градусов; v-образные двухрядные, с расположением цилиндров подуглом и с противоположным горизонтальным расположением цилиндров (под углом 180 градусов)

способу наполнения цилиндров свежим зарядом – двигатели без наддува, и в которых наполнение осуществляется за счет разряжения, создаваемого в цилиндре при движении поршня от ВМТ к НМТ, и с наддувом – наполнение цилиндра свежим зарядом происходит под давлением, которое создается компрессором;

охлаждению – с жидкостным или воздушным охлаждением.

Источник статьи: http://www.autoezda.com/2014-07-01-16-12-30/%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE-%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D1%8F/1228-klasification-of-engine.html

Классификация двигателей по типу

Принцип работы силового агрегата основывается на преобразования тепловой энергии в механическую. Повторяющиеся процессы в моторе являют собой рабочий цикл двигателя. Зависимо от того, сколько поршень делает ходов, двигатели делятся на четырехтактные и двухтактные. Двигатели внутреннего сгорания, которые применяются в машинах, работают по 4-тактному циклу. Сюда входит впуск топлива, рабочий ход (туда-назад) и выпуск отработанных газов.

В двухтактном моторе за один цикл происходит всего 2 хода поршня: рабочий ход и сжатие. Наполнение цилиндров и очистка происходит во время этих 2-х тактов. У двигателей этого типа есть существенные недостатки, например высокий уровень выброса выхлопных газов. Главный минус – это высокий расход топлива, из-за чего двухтактные двигатели не используются в современных автомобилях.

Октановое число топлива

Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.

Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении — такое явление называют обратной вспышкой.

Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры. Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Авиационные двигатели

Прежде чем приступить к описанию конкретного класса двигателей, лучше всего разобраться, по какому принципу их разделяют. В настоящее время эта группа классифицируется на два принципиально разных вида. Единственным отличительным признаком одной группы от другой стала возможность работы устройства вне пределов атмосферы. Другими словами, первая категория агрегатов требует для своей работы наличия атмосферы, вторая же не привязана к этому показателю и может эксплуатироваться вне ее пределов. Первая группа получила название атмосферных или воздушных, вторая же называется ракетной.

Стоит отметить, что условно эти типы устройств называют, как винтовыми воздушными двигателями и воздушными реактивными двигателями самолета.

Дизельный двигатель

Дизельный двигатель широко применяется в автомобилях повышенной грузоподъемности и стационарных силовых установках, которые работают обычно на постоянной скорости. Дизельный двигатель обладает высоким термическим КПД, поэтому отличается высокой экономичностью. В выхлопных газах дизельного двигателя содержится низкий процент углеводородов и окислов углерода. Такие характеристики делают его хорошей альтернативой поршневому бензиновому двигателю в автомобилях. По конструкции оба двигателя очень похожи. Дизельный двигатель тяжелей и дороже бензинового. У этих двигателей принципиально разные топливные системы и системы зажигания. В дизельном двигателе в камеру сгорания всасывается только воздух. Он сжимается поршнем во время такта сжатия до такой степени, что нагревается при этом до температуры примерно 1000°Ф (540°С). Когда поршень доходит до верхней мертвой точки, в камеру сгорания через топливную форсунку впрыскивается под давлением топливо. Под действием высокотемпературного сжатого воздуха топливо воспламеняется. Давление рабочего газа, образующегося в результате сгорания топлива, толкает поршень вниз, и он совершает рабочий такт. Коленчатый вал продолжает вращаться и заставляет поршень снова двигаться вверх, вытесняя отработавшие газы из камеры сгорания через выпускной клапан. Использование дизельного двигателя в легковых автомобилях сдерживается двумя факторами: высокой стоимостью двигателя и сложностью достижения очень низкой нормы окислов азота в выхлопных газах, регламентированной стандартами.

Классификация двигателей

Классификация двигателей будет понятна, если мы её рассмотрим на основе их признаков: по их назначению, конструктивным особенностям, физическим процессам и другим характерным особенностям.

По типу смесеобразования

внешнее смесеобразование (карбюраторные или газовые двигатели)

Нужно обратить внимание на то, что карбюраторные двигатели потребляют легкое жидкое топлив (бензин) и в камеру сгорания поступает уже готовая смесь паров топлива с воздухом;
внутреннее смесеобразование (бензиновые и дизельные с непосредственным впрыском топлива) дизели работают на жидком тяжелом топливе (дизельное). Оно поступает через форсунки в камеру сгорания в тот момент, когда воздух максимально сжат поршнем, находится в верхней мертвой точке (ВМТ), и соответственно перегрет до высокой температуры, достаточной для поджига смеси;

  • с непосредственным поджиганием смеси в цилиндре в нужный момент, будь то карбюраторные или двигатели с впрыском бензина.;
  • с воспламенением от сжатия в цилиндре (дизель).
  • однорядные, двухрядные (V-образные, оппозитные);
  • n — цилиндровые. Количество цилиндров в двигателе автомобилей может быть любым, но самые распространенные в автомобилестроении — четырехцилиндровые двигатели.

По системам охлаждения двигателя

  • воздушное (с естественным атмосферным обдувом и принудительным);
  • жидкостное (специальная система двигателя, имеющая по всему двигателю каналы, по которым принудительно перекачивается охлаждающая жидкость, охлаждая её с помощью радиатора). На блоге подробно описана работа охлаждающей системы.

Это и есть краткое пояснение по теме классификация ДВС. По каждому пункту на блоге имеется подробная статья.

Авиационные двигатели

Прежде чем приступить к описанию конкретного класса двигателей, лучше всего разобраться, по какому принципу их разделяют. В настоящее время эта группа классифицируется на два принципиально разных вида. Единственным отличительным признаком одной группы от другой стала возможность работы устройства вне пределов атмосферы. Другими словами, первая категория агрегатов требует для своей работы наличия атмосферы, вторая же не привязана к этому показателю и может эксплуатироваться вне ее пределов. Первая группа получила название атмосферных или воздушных, вторая же называется ракетной.

Стоит отметить, что условно эти типы устройств называют, как винтовыми воздушными двигателями и воздушными реактивными двигателями самолета.

Инжекторный тип двигателя

Ижекторный двигатель работает немного иначе: топливо подается в воздушную среду способом мелкого впрыска. Под давлением через форсунку распыляется горючая жидкость, что значительно снижает расход топлива, потому как количество дозируют специальные устройства. По этой причине инжекторные двигатели более экономичные, а оптимальная пропорция горючей смеси позволяет увеличить чистоту выхлопа и повысить КПД силового агрегата.

Инжекторные двигатели делятся на механические и электронные. В механическом двигателе устанавливается дозировка топлива с помощью рычагов, а в электронном силовом агрегате применяется специальная система управления дозировкой топлива. При использовании таких систем более тщательно перегорает топливо и снижаются вредные выбросы.

Октановое число топлива

Энергия передаётся на коленчатый вал двигателя от расширяющихся газов во время рабочего хода. Сжатие топливо-воздушной смеси до объёма камеры сгорания повышает эффективность работы двигателя и увеличивает его КПД, но увеличение степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля.

Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это, в свою очередь, заставит поршень провернуть коленвал в обратном направлении — такое явление называют обратной вспышкой.

Октановое число является мерой процентного содержания изооктана в гептан-октановой смеси и отражает способность топлива противостоять самовоспламенению под воздействием температуры.

Топливо с более высокими октановыми числами позволяют двигателю с высокой степенью сжатия работать без склонности к самовоспламенению и детонации и, стало быть, иметь более высокую степень сжатия и более высокий КПД.

Работа дизельных двигателей обеспечивается самовоспламенением от сжатия в цилиндре чистого воздуха или бедной газовоздушной смеси, неспособной к самостоятельному горению (газодизель) и отсутствия в заряде топлива до последнего момента.

Рекомендуем: График овердрайв. Овердрайв на акпп — что это и как пользоваться

Устройства на жидком топливе

В классификации двигателей с жидким веществом в качестве топлива, их относят к группе ракетных устройств

Важно отметить, что в качестве рабочей жидкости можно использовать самое разное топливо. Тут необходимо понимать, что выбор смеси для запуска агрегата будет зависеть от характеристик, предназначения, мощности, а также от продолжительности работы самого двигателя

Смотреть галерею

Среди всех требований, которые чаще всего предъявляются именно к этому классу устройств — это наименьший расход рабочей смеси или же, что то же самое, максимальная удельная тяга

Когда возникает необходимость в выборе смеси для работы двигателя на жидком топливе, обращают внимание на такие параметры, как: скорость воспламенения и горения, плотность, испаряемость, ядовитость, вязкость и еще несколько важных характеристик


Смотреть галерею

Виды электродвигателей: классификация

Жёсткой классификации электродвигателей нет, но различать их можно по нескольким параметрам. Основные – тип питания и наличие скользящего контакта. Эти позиции можно считать ключевыми и по ним проще ориентироваться. В общем-то, видов электродвигателей не так и много – синхронные, асинхронные, постоянного тока, вентильные. Вот, пожалуй, всё. Другое дело, что в большинстве «категорий» есть достаточно вариантов, которые значительно меняют свойства и характеристики. Но с этим придётся разбираться применительно к каждой конструкции.

Электрические двигатели отличаются типом питания, устройством и назначением

Итак, рассмотрим виды электродвигателей по виду питающего напряжения. Они бывают:

  • постоянного тока;
  • переменного тока: однофазное питание;
  • трехфазное питание;

универсальные.

Пояснений требует только универсальный тип. Такой электродвигатель может работать как от постоянного, так и от переменного напряжения. По сути, один вид – универсальный коллекторный двигатель с обмотками возбуждения. К двигателям переменного тока относятся синхронные, асинхронные. На постоянном токе работают коллекторные и вентильные.

Наиболее распространённые виды электродвигателей

По способу передачи электропитания все электродвигатели можно разделить на две группы:

  • с коллектором (щёточные);
  • без коллектора (бесщёточные).

Бесщёточные электродвигатели требуют меньше обслуживания, работают тише, более надёжны. К ним относятся асинхронные с короткозамкнутым ротором (работают от переменного напряжения), вентильные (питаются постоянным напряжением). Остальные имеют коллектор и щётки, через которые на обмотки катушек подаётся напряжение.

Способ приготовления смеси

Классификация двигателей внутреннего сгорания может также осуществляться по тому, каким способом было приготовлено топливо для их работы. К примеру, выделяют два основных вида — это с внешним смесеобразованием и с внутренним смесеобразованием. Под смесеобразованием понимают процесс, в результате которого получают топливо для работы двигателя. Под внешним смесеобразованием понимают процесс приготовления топлива для работы двигателя вне его пределов, то есть в карбюраторе или в смесителе. Естественно, что к этой группе относят те виды этих устройств, которые не способны производить смесь самостоятельно.

К внутреннему смесеобразованию относится тот случай, когда процесс производства смеси происходит непосредственно в самом цилиндре двигателя.

Газовые двигатели

Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:

  • смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
  • сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
  • генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются:
    • уголь
    • торф
    • древесина

Инжекторный тип двигателя

Ижекторный двигатель работает немного иначе: топливо подается в воздушную среду способом мелкого впрыска. Под давлением через форсунку распыляется горючая жидкость, что значительно снижает расход топлива, потому как количество дозируют специальные устройства. По этой причине инжекторные двигатели более экономичные, а оптимальная пропорция горючей смеси позволяет увеличить чистоту выхлопа и повысить КПД силового агрегата.

Инжекторные двигатели делятся на механические и электронные. В механическом двигателе устанавливается дозировка топлива с помощью рычагов, а в электронном силовом агрегате применяется специальная система управления дозировкой топлива. При использовании таких систем более тщательно перегорает топливо и снижаются вредные выбросы.

Устройство механизма вращения клапана

Механизм вращения клапана состоит из: неподвижного корпуса 2 в наклонных канавках которого расположены пять шариков 3 с возвратными пружинами 10, дисковой пружины 9 и опорной шайбы 4 с замочным кольцом 5. Механизм устанавливается в рас­точке, сделанной в головке цилиндров под опорной шайбой 4 кла­панной пружины 6, закрепляемой на стержне 1 с помощью сухари­ков 8 и тарелки 7. При закрытом клапане давление на дисковую пружину 9 сравнительно невелико, и она выгнута наружным краем вверх, а внутренним краем опирается в заплечик корпуса 2. Шари­ки 3 отжаты пружинами 10 в исходное положение.

В момент открытия клапана давление клапанной пружины на опор­ную шайбу 4 возрастает; под действием этого давления дисковая пружина 9, выпрямляясь, передает давление на шарики 3 и вызы­вает их перемещение в конечное положение. Вместе с шариками перемещаются дисковая пружина с опорной шайбой, клапанная пружина и клапан. Когда клапан закрывается, давление на дисковую пружину 9 уменьшается, и она, выгибаясь, вновь касается своим внутренним краем заплечиков корпуса 2, освобож­дая тем самым шарики 3. Шарики под действием возвратных пру­жин перемещаются в исходное положение. Таким образом, при каждом открытии клапана происходит его поворот на некоторый угол. (При номинальном скоростном режиме клапаны совершают 20—40 об/мин.)

Виды электродвигателей: какой лучше

Описаны только основные виды электродвигателей и даны краткие характеристики, очень сжато описано устройство и принцип работы. Тем не менее, уже можно сделать выводы о том, что идеального решения, причём для всех случаев, просто нет. Есть наиболее подходящее для каждого конкретного случая.

  • Асинхронный электродвигатель без частотного регулирования – лучший выбор для насосов.
  • Коллекторный двигатель с его регулируемыми скоростями вне конкуренции для дрелей и пылесосов. И то, в последнее время стали делать с вентильными, они без щеток, что делает работу тише, срок службы дольше, хотя цену выше. Так что, тут, как посмотреть.

    Выбирать вид электродвигателя надо под каждый конкретный случай

  • Для вентиляторов с длительным режимом работы выбирать приходится между асинхронных и вентильных. Но только если они не слишком мощные. Для мощных важным является возможность разделения на секции, а это проще реализовать у вентильных. И даже на кулерах стали в последнее время использовать вентильные с магнитным ротором.

В общем, чтобы ответить какой лучше, надо рассматривать совокупность условий и характеристик работы

Принимать во внимание достоинства и недостатки, перебирать все виды электродвигателей и только так можно найти оптимальный

Принцип работы бестопливного агрегата

Принцип работы данного устройства заключен в том, что все его магниты повернуты одноименными полюсами в сторону друг друга. Так как одноименные магнитные полюса будут всегда отталкиваться друг от друга, то их движения заставит диск или маховик вращаться вокруг своей оси. Кроме этого типа двигателя, имеется еще один, который очень схож по своему принципу работы с бестопливным.

Таким устройством стал магнитный двигатель, который имеет статор в виде постоянного магнитного кольца, а также ротор (или его еще называют якорь). Этот элемент представляет собой стержневой постоянный магнит, который размещен внутри статора в одной плоскости.

Недостатком таких типов двигателей стало то, что они нуждаются в подводе электроэнергии для осуществления своей работы. При изобретении такого типа устройства ставилось несколько целей. Необходимо было добиться экологически чистого вида двигателя, который бы не имел вредных выхлопов в процессе своей работы, а также работал без потребления какого-либо вида топлива и без подвода электрической энергии из внешних источников. При этом он также не должен был загрязнять окружающую среду или атмосферный воздух.

МАТЕРИАЛЫ ИЗГОТОВЛЕНИЯ

В качестве материала изготовления для цельнолитых поршней используются алюминиевые сплавы. Детали из таких сплавов характеризуются малым весом и хорошей теплопроводностью. Но при этом алюминий не является высокопрочным и жаростойким материалом, что ограничивает использование поршней из него.

Литые поршни изготавливаются и из чугуна. Этот материал прочный и устойчивый к высоким температурам. Недостатком их является значительная масса и слабая теплопроводность, что приводит к сильному нагреву поршней в процессе работы двигателя. Из-за этого их не используют на бензиновых моторах, поскольку высокая температура становится причиной возникновения калильного зажигания (топливовоздушная смесь воспламеняется от контакта с разогретыми поверхностями, а не от искры свечи зажигания).

Конструкция составных поршней позволяет комбинировать между собой указанные материалы. В таких элементах юбка изготавливается из алюминиевых сплавов, что обеспечивает хорошую теплопроводность, а головка – из жаропрочной стали или чугуна.

Но и у элементов составного типа есть недостатки, среди которых:

  • возможность использования только в дизельных двигателях;
  • больший вес по сравнению с литыми алюминиевыми;
  • необходимость использования поршневых колец из жаростойких материалов;
  • более высокая цена;

Из-за этих особенностей сфера использования составных поршней ограничена, их применяют только на крупноразмерных дизельных двигателях.

ВИДЕО: ПОРШЕНЬ. ПРИНЦИП РАБОТЫ ПОРШНЯ ДВИГАТЕЛЯ. УСТРОЙСТВО

Самые известные и широко применяемые во всем мире механические устройства — это двигатели внутреннего сгорания (далее ДВС). Ассортимент их обширен, а отличаются они рядом особенностей, например, количеством цилиндров, число которых может варьироваться от 1 до 24, используемым топливом.

Работа поршневого двигателя внутреннего сгорания

Одноцилиндровый ДВС

можно считать самым примитивным, несбалансированными и имеющими неравномерный ход, несмотря на то, что он является отправной точкой в создании многоцилиндровых двигателей нового поколения. На сегодняшний день они применяются в авиамоделировании, в производстве сельскохозяйственных, бытовых и садовых инструментов. Для автомобилестроения массово применяются четырехцилиндровые двигатели и более солидные аппараты.

Дизельный тип двигателя

Отдельного внимания достойны дизельные двигатели. Их принцип работы основывается на воспламенении рабочей смеси при сжатии. Когда втягивается воздух, процесс происходит под высоким давлением, в результате чего смесь самовоспламеняется. После воспламенения происходит рабочий ход поршня, который потом вытесняет отработавшие газы.

Данный тип двигателя имеет более низкий расход топлива и небольшое количество вредных веществ в выбросах. КПД этого силового агрегата тоже намного выше. Дизельные двигатели сейчас продолжают совершенствоваться и даже заморозки уже не помеха к запуску мотора.

Разные виды двигателей, работающих на дизельном топливе, отличаются характеристиками, которые зависят от времени года. Эти силовые агрегаты не имеют системы зажигания, потому как топливо загорается из-за высокого давления, что дает движение поршня.

Агрегат с твердым топливом

Классификация двигателей включает в себя еще один вид устройств. Эти агрегаты работают на слегка непривычном, твердом топливе

Тут важно отметить, что сфера применения этих двигателей также ракетная. В качестве основного вещества, являющегося топливом для этого устройства, стал порох

Особенность работы заключается в том, что агрегат работает до тех пор, пока не израсходует весь запас до конца. Сам же порох помещается непосредственно в камеру сгорания двигателя. Такие устройства стали называть твердотопливными ракетными двигателями, или РДТТ.

Тут важно отметить, что именно этот класс двигателей является одним из наиболее старых. К тому же именно этот тип устройств стал первым, который нашел свое практическое применение

Еще один важный факт заключается в том, что ранее в качестве топлива использовался дымный порох. С развитием технологий изменился и вид смеси. Людям удалось изобрести бездымный порох для применения в качестве топлива для ракетных двигателей.

Бестопливный двигатель

Один из довольно интересных классов агрегата — это двигатель, не использующий для своей работы какую-либо топливную смесь. Чаще всего такие типы устройств используются, как приводы вращения. Состоит этот агрегат из таких частей, как: диск или маховик, который закрепляется на оси. На этой же детали имеется один или же несколько постоянных магнитов ротора.

Важным условием является то, что эти магниты, как и сам диск или маховик, должны быть установлены так, чтобы ничего не мешало их свободному вращению вокруг своей оси. Еще одна важнейшая деталь бестопливного двигателя — это цилиндрический постоянный магнит стопора, который неподвижно закреплен на штоке, установленном параллельно диску или маховику. Постоянный цилиндрический магнит может вместе со штоком перемещаться в ту зону, где в данный момент времени имеется магнитное поле, созданное магнитами ротора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector