Делаем зарядное устройство из блока питания компьютера
Содержание:
- Переделка электронного трансформатора
- Виды БП для компьютера
- Зарядное из компьютерного блока питания
- 3 схемы на транзисторах и тиристорах
- Простое автоматическое зарядное устройство
- Зарядка от USB-порта
- Описание и принцип работы пуско-зарядного устройства
- Зарядное устройство из БП ноутбука
- Настройка
- Как правильно зарядить АКБ самодельной зарядкой?
- Заключение
Переделка электронного трансформатора
Неплохой и достаточно компактный блок питания можно сделать из так называемого электронного трансформатора (ЭТ), предназначенного для питания низковольтных галогенных ламп.
Но чтобы использовать трансформатор совместно с шуруповёртом, его (блок) необходимо доработать. Взглянем на классическую схему простейшего ЭТ.
Это простейший импульсный понижающий источник питания, собранный по двухтактной схеме. Выходное напряжение снимается со вторичной обмотки выходного трансформатора. Схема, приведённая на рисунке, конечно, не единственная. Есть приборы проще, есть сложнее. Есть со стабилизацией выходного напряжения, системой плавного пуска и защитой от короткого замыкания. Но то, что нас интересует, является неизменной частью любого электронного трансформатора. Так, в чем трудность?
Проблема заключается в том, что выходное напряжение подобных БП переменное с частотой десятки килогерц, да ещё и промодулированное частотой 50 Гц. Оно годится для питания ламп накаливания, но не подходит для шуруповёрта. Значит, его нужно выпрямить и сгладить. Для этого используем диод VD1 и два сглаживающих конденсатора — С1 и С2, подключив их по схеме, приведённой ниже.
Лампа Н1 служит нагрузочной, когда шуруповёрт отключён. Она необходима для старта преобразователя — без нагрузки он просто не запустится. Высоковольтный электролитический конденсатор можно взять из БП для компьютера или любого другого устройства, скажем, из телевизора с импульсным блоком питания. Он находится в корпусе электронного трансформатора. Диод и конденсатор помещают в корпус инструмента, а лампу устанавливают так, чтобы она ещё и рабочее место освещала — убила, как говорится, сразу двух зайцев. Такая лампа будет много удобнее штатной подсветки, которая включается только вместе с инструментом. Вслепую целишься в темноте, потом запускаешь шуруповёрт и смотришь, куда попал.
Диод КД2960 представляет собой быстродействующий выпрямительный диод, рассчитанный на ток 20 А и выдерживающий обратное напряжение 1200 В. Его зарубежный аналог — 20ETS12. Заменить этот диод обычным выпрямительным не получится — у него слишком низкое быстродействие, и на частоте в десятки килогерц он будет больше греться, чем выпрямлять.
Но замена есть. Вполне подходит диод Шоттки, выдерживающий ток 15–20 А и обратное напряжение не ниже 25 В. Найти такие диоды можно в блоках питания ПК. Там они служат для этих же целей. Диод, конечно, нужно поставить на теплоотвод.
Лампочка миниатюрная. Её можно найти в советских новогодних гирляндах или использовать две на 6,3 В, включённые последовательно. Собираем выпрямитель, размещаем его в корпусе инструмента, выводим через проделанное отверстие провода, подпаиваем одну часть разъёма. Вторую подпаиваем к проводам от трансформатора — и доработка закончена. Поскольку напряжение на выходе электронного трансформатора переменное, полярность подключения проводов от ЭТ к выпрямителю можно не соблюдать.
Как указывалось выше, существуют трансформаторы, обеспечивающие плавный пуск галогенных ламп. Подойдут ли они нам? Вполне. Как только мы подключим ЭТ к сети, он запустится и в течение 1–3 секунд выйдет на рабочий режим — это будет хорошо заметно по плавному разгоранию лампы Н1. После этого инструментом можно пользоваться без проблем.
Виды БП для компьютера
Сегодня существует два основных типа БП для настольных компьютеров:
- AT;
- ATX.
БП формата AT, или так называемый старый, выпускался в трёх форм-факторах для работы с материнскими платами формата AT.
- AT — для корпуса «башня».
- Baby AT — для корпуса «мини-башня».
- LPX — для плоского корпуса.
Формат AT снят с выпуска в 2001 году, но вполне успешно работает в стареньких ПК до сих пор.
Блок питания формата AT
БП ATX пришёл на смену AT в 2001 году с появлением материнских плат одноимённого формата. Имеет много модификаций, которые различаются в основном наличием или отсутствием дополнительных силовых разъёмов для питания материнской платы и периферии.
ATX2 появился ещё позже и отличается от ATX разъёмом питания материнской платы. Вилка на нём несколько больше и имеет 24 контакта вместо 20 для ATX.
Основные отличия «старых» БП от «новых»:
- Типы и количество разъёмов.
- Шины управления
Типы разъёмов
Это касается разъёмов питания материнской платы. В “старом” AT для этих целей использовались два 6-контактных разъёма, которые подключались к одному 12-контактному разъёму на материнской плате.
Блок питания ATX оснащён более мощным 20-контактным разъёмом для подачи тока на материнскую плату.
У ATX2 есть вилка для подключения материнской платы на 24 контакта.
Разъёмная 24-контактная вилка БП ATX2
Кроме того, БП типа ATX часто содержат дополнительные колодки для служебных сигналов и питания мощных потребителей, расположенных на материнской плате – например, процессора и видеокарты.
На фото цифрами обозначены:
- «PCIe8 connector» для питания видеокарты.
- «PCIe6 connector» для питания видеокарты.
- «EPS12V» для запитки процессора.
- «ATX PS 12V» для запитки процессора.
Изменения произошли и в колодках питания периферии. В блоке ATX появился разъём для питания SATA устройств, а в последних версиях исчезла вилка питания НГМД (флоппи-дисков).
На фото цифрами обозначены:
- AMP 171822-4 — мини для питания слаботочной периферии (обычно НГМД).
- Molex 8981 — для питания относительно мощной периферии (накопитель на жёстких магнитных дисках и CD-привод с IDE-интерфейсом).
- Molex 88751 — для питания устройства с интерфейсом SATA.
Шины управления
Сразу оговоримся, в блоках питания AT таких шин всего одна — PG (Power good). Сигнал на ней становится высоким после того, как на всех шинах питания устанавливаются напряжения требуемого уровня. То есть этот сигнал появляется с некоторой задержкой после включения БП, не давая процессору работать, пока не пройдут переходные процессы в источнике питания.
Исчезает сигнал PG практически мгновенно при сбое питания по любой из шин, причём он реагирует раньше, чем успеют разрядиться накопительные конденсаторы неисправной линии. Это даёт небольшое время процессору для принятия тех или иных экстренных мер для уменьшения вероятности потери данных.
БП ATX стали более «умными» — обзавелись дополнительными шинами управления:
Power on. В модификациях с этой шиной блок питания включается подачей сигнала низкого уровня на вход «Power on». То есть включение и выключение ПК можно доверить материнской плате. Благодаря этому входу после команды «Завершить работу» ПК выключается сам. В AT-моделях ПК после такой команды просто выводил сообщение: «Теперь питание ПК можно выключить».
+3,3 V sense. Вход контроля напряжения и компенсации потерь по шине 3,3 В. При помощи этой шины материнская плата корректирует напряжение (+3,3 В) и при необходимости даёт команду БП на увеличение его или уменьшение.
FanC. При помощи этой шины материнская плата может управлять скоростью вращения вентилятора охлаждения блока питания вплоть до его полного выключения в ждущем или спящем режиме. Шина появилась лишь в поздних моделях блоков ATX/NLX.
FanM. Сигнал контроля вентилятора (fan monitor) позволяет материнской плате следить за текущей скоростью вентилятора блока питания. В частности, с его помощью можно оповестить пользователя о выходе из строя основного охлаждающего вентилятора в блоке питания. Шина появилась лишь в поздних модификациях блоков ATX/NLX.
Зарядное из компьютерного блока питания
Первым делом, о чем хочется сообщить, это то, что многие элементы в блоке находятся под опасным для жизни напряжением, если есть сомнения в правильности ваших действий – не рискуйте, ни своим здоровьем, ни работоспособностью вашего БП.
Для переделки подойдет практически любой блок питания ATX
Но стоить обратить внимание на то, что есть более геморройные блоки, а есть менее. Для выбора «удобного» для переделки блока необходимо убедиться в том, что в блоке установлен ШИМ контроллер TL494 или его аналог (KA7500B)
По сути, этот ШИМ использовался практически на всех старых блоках AT и ATX мощностью 200 – 300 Вт.
Одни из самых распространенных и дешевых блоков являются блоки Codegen 300X и Codegen 300XA. Вот на них мы и остановимся более подробно. К стати, блоки питания Codegen 200, 250, 300 Вт имеют практически одинаковую схему и отличаются лишь номиналом некоторых элементов, они отлично подходит для переделки в зарядное.
Зарядное из компьютерного блока питания Codegen 300XA
Переделка такого блока будет включать в себя несколько шагов. Разбираем блок питания.
Выпаиваем все провода, которые использовались для подключения. Оставляем лишь черный провод (минус) и желтый провод (шина +12 В). Зеленый провод (Power ON) просто обрезаем и подключаем свободный конец на минус. С помощью замыкания зеленого провода на минус мы добьемся автоматического старта блока при включении в сеть.
Далее необходимо подключить вентилятор охлаждения на шину (– 12 В). В принципе, это можно и не делать, но будет один неприятный момент при подключении АКБ к зарядке. Вентилятор изначально питается с шины +12 В, при подключении АКБ к зарядке на шине + 12 В появляется напряжение и включается вентилятор. Некоторым это может очень не понравиться, так, что рекомендуем подключить красный провод вентилятора на минус блока, а черный на шину (– 12 В, бывший синий провод).
Проверяем работоспособность блока. Блок должен запуститься автоматически, а на выходе должно быть напряжение 12В.
Перед всеми дальнейшими манипуляциями желательно найти схему блока или подобрать наиболее близкую. Ниже изображена схема Codegen 300XA.
Находим резистор, через который первая нога TL494 соединяется с шиной +12 В., на схеме он помечен красным.
Выпаиваем его и измеряем сопротивление, оно составило 39 кОм. На место этого резистора ставим многооборотный подстроечный резистор максимальным сопротивлением на 200 кОм, предварительно выставив на нем сопротивление также 39 кОм.
Запускаем блок питания. На выходе напряжение должно быть около 12 В.
Последним шагом станет поднятие напряжения до 14,2 В с помощью регулировки подстроечного резистора.
Подстроечный резистор лучше всего брать многооборотный, это даст легкую и точную настройку выходного напряжения.
Зарядное из компьютерного блока питания Codegen 300X
Манипуляции, по сути, будут такими же, добавятся лишь пара дополнительных шагов.
Отключаем все провода от блока. Оставляем только черный (минус) и желтый (шина +12 В). Зеленый (Power ON) обрезаем и подключаем свободный конец на минус. Далее подключаем питания вентилятора охлаждения на шину (– 12 В). Красный провод вентилятора на минус блока, а черный на шину (– 12 В, бывший синий провод).
Тестируем работу. На выходе напряжение 12 В.
На схеме Codegen 300X находим резистор, через который первая нога TL494 соединяется с шиной +12 В., на схеме он помечен красным.
Далее выпаиваем его и измеряем сопротивление, у нашего блока оно составило 38 кОм. На место этого резистора ставим многооборотный подстроечный резистор максимальным сопротивлением на 200 кОм, предварительно выставив на нем сопротивление также 38 кОм.
Важно найти стабилитрон ZD1 и удалить его из платы. На схеме он зачеркнут
Если его не выпаять, мы не сможем поднять напряжение выше 13 В, т.к. блок уйдет в защиту.
Запускаем блок питания. На выходе напряжение должно быть почти 12 В.
Финишным этапом будет поднятие напряжения до 14,0 В с помощью регулировки подстроечного резистора. Выше 14,0 В напряжение не стоит подымать на этом БП без дальнейших изменений схемы, т.к. уже при напряжении 14,2 В будут наблюдаться проблемы с запуском блока. А 14,0 В это вполне достаточно для зарядки автомобильного АКБ.
Стоит отметить, что при неправильном подключении АКБ зарядное из блока питания ATX выходит из строя моментально, важно оснащать его хоть самыми простыми защитными схемами от переполюсовки на реле или полевику. Также в такое зарядное можно добавить вольтамперметр, защиту от переполюсовки или просто плату индикации заряда
Также в такое зарядное можно добавить вольтамперметр, защиту от переполюсовки или просто плату индикации заряда.
comments powered by HyperComments
3 схемы на транзисторах и тиристорах
Для начала рассмотрим схемы защиты блока питания на полупроводниковых компонентах. Они просты, надежны и, главное, обладают большим, чем у схем с электромагнитным реле быстродействием.
Простейшая на биполярном транзисторе
Эта несложная для повторения конструкция подойдет для относительно маломощного (до 5-6 А) блока питания или зарядного устройства. В качестве управляющего ключа в блоке защиты используется довольно распространенный и недорогой кремниевый транзистор КТ819.
Пока ток, протекающий через токоизмерительный резистор R3 в нагрузку не превышает допустимого, управляющий транзистор Т2 закрыт. А Т1 благодаря напряжению смещения с резистора R1 открыт. Нагрузка получает питание. При перегрузке или коротком замыкании на выходе схемы напряжение, вызванное падением на токоизмерительном резисторе R3, открывает T2. Тот в свою очередь запирает ключ Т1, одновременно зажигая светодиод LED1 «Перегрузка». В этом состоянии схема будет находиться до тех пор, пока ток потребления нагрузкой не войдет в допустимый диапазон.
На месте Т1 могут работать транзисторы 2N5490, 2N6129, 2N6288, 2SD1761, BD291, BD709, BD953, КТ729. Т2 – любой маломощный кремниевый транзистор типа n-p-n. К примеру, популярный КТ315 с любой буквой. Светодиод – любой индикаторный. Наладка схемы сводится к подбору номинала резистора R3, выполненного из куска нихромового провода. Чем ниже сопротивление резистора, тем выше ток, при котором сработает защита. Силовой транзистор Т1 нужно установить на радиатор с эффективной площадью рассеивания не менее 300 мм2.
На полевом транзисторе
В этой конструкции в качестве силового ключа используется полевой транзистор, имеющий меньшее, чем биполярный падение напряжения и способный коммутировать больший ток.
Схема защиты от КЗ на полевом транзисторе
Пока ток через нагрузку не превышает критический, падение напряжения на токоизмерительном резисторе R1 невелико, транзистор Т2 закрыт. Т1 открывается напряжением, которое подаётся через LED1. В это время ток, протекающий через светодиод и резистор R4 очень мал и светодиод не светится.
При коротком замыкании или перегрузке падение напряжения на токоизмерительном резисторе увеличивается, транзистор Т2 открывается и запирает полевой транзистор, отключая нагрузку. При этом ток через светодиод увеличивается и последний начинает светиться, указывая на перегрузку. Налаживание конструкции сводится к подбору номинала токоизмерительного резистора R1 – чем его сопротивление ниже, тем при большем токе нагрузки включится защита.
В узле можно использовать практически любые полевые транзисторы, выдерживающие ток 15-20 А и соответствующее напряжение. Подойдут, к примеру, IRFZ40, IRFZ44, IRFZ46, IRFZ48. Если ток через нагрузку не будет превышать 8 А транзистору радиатор не нужен. Т2 – любой маломощный кремниевый n-p-n проводимости, скажем КТ315 или КТ3102.
На тиристоре
Эта схема предназначена для защиты от короткого замыкания зарядного устройства, но может работать с любым трансформаторным блоком питания без сглаживающих конденсаторов.
Схема защиты зарядного устройства на тиристоре
Пока ток через нагрузку не превышает нормальный, T1 открыт. При этом при каждой полуволне напряжения коллекторным током открытого транзистора открывается тиристор, питая нагрузку. При коротком замыкании выходное напряжение падает, Т1 закрывается и запирает тиристор. Критическое напряжение, а значит, и порог срабатывания настраивается потенциометром Р1. В схеме можно использовать любой тиристор серии КУ202, Транзистор КТ814 можно заменить на BD136, BD138, BD140. Тиристор необходимо установить на радиатор площадью не менее 300 см2.
Простое автоматическое зарядное устройство
ПАЗУ состоит из трансформатора и диодного моста. Конечно, можно использовать неавтоматический прибор и не знать проблем, но это связано с потерей лишнего времени. Мы подробно разберём изготовление по отдельности неавтоматического агрегата и автомата к нему. Предлагаемый нами автомат подойдёт к любому отставшему от времени и морально устаревшему механизму. Из трёх представленных вам конструкций эти являются самыми простыми для понимания новичка.
Схема автоматического зарядного устройства для аккумуляторов
Начнём с неавтоматического приспособления как основы для всей структуры. Такое ЗУ – надёжный модуль, незаслуженно теряющий свою популярность, но ещё применяемый многими автолюбителями. После небольшой модернизации этот девайс займёт своё заслуженное место в XXI веке.
Схема автоматического зарядного устройства для автомобильного аккумулятора
Данный прибор не является ЗУ сам по себе. Он представляет собой автоматическую установку, подключаемую к любому заряднику старого образца и позволяющую использовать его в автоматическом режиме.
На чертеже изображён блок регулировки без самого зарядника. Каждая часть блока работает независимо друг от друга:
- первая LM317 – стабилизатор тока;
- резистор – 1,25 Ом, чем выше ток, тем мощнее резистор (1 А – 5 Вт);
- вторая LM317 – стабилизатор напряжения;
- на вход подключается нагрузочный резистор 1 кОм.
Список радиодеталей
В него входят:
- понижающее трансформаторное устройство (от 220 до 13,8 вольт);
- диодный мост;
- стрелочный или цифровой амперметр;
- три провода: два с зажимами для клемм и один с вилкой;
- плавкий предохранитель;
- железный или пластиковый корпус для всей конструкции.
Для сборки автоматического зарядного устройства для автомобильного аккумулятора нам понадобятся:
- первая LM317 (стабилизатор тока);
- резистор;
- вторая LM317;
- провод для сети.
Всё необходимое сегодня можно свободно приобрести в специализированных магазинах или заказать на интернет-площадках. Хотя многие мастера умудряются сэкономить и на этом, снимая комплектующие с отслужившей техники.
Сборка
Сборка включает в себя несколько этапов:
- Собираем механизм. Объединяем трансформатор с диодным мостом, к которому крепим два провода с «крокодилами». Для определения силы тока подключаем амперметр. Затем устанавливаем питание и предохранитель. Помещаем всю конструкцию в короб из пластика или металла.
- Объединяем стабилизатор тока с резистором и стабилизатор напряжения. Далее выставляется необходимое напряжение.
- Соединяем простое ЗУ и автомат. В результате получаем автоматическое зарядное устройство для автомобильного аккумулятора.
Получившийся гибрид будет саморегулируемым. Главное, проверьте, полны ли банки электролитом, и выкрутите пробки, если таковые предусмотрены производителем. В принципе, данный автомат можно использовать в комплексе с любым устройством, как самодельным, так и покупным, что является несомненным его плюсом. Да и всегда приятно собрать автоматическое ЗУ для автомобильного аккумулятора своими руками.
Зарядка от USB-порта
Можно изготовить зарядное устройство для никель-кадмиевых батарей на основе обычного USB-порта. При этом, заряжаться они будут током емкостью примерно 100 мА. Схема, в таком случае, будет следующей:
На сегодняшний момент, существует достаточно много различных зарядных устройств, продающихся в магазинах, но их стоимость может быть достаточно высокой. Учитывая, что главный смысл различных самоделок — это именно экономия денежных средств, то самостоятельная сборка еще более целесообразна в данном случае.
Данную схему можно доработать, добавив дополнительную цепь для зарядки пары аккумуляторов AA. Вот, что в итоге получилось:
Чтобы было более наглядно, вот те комплектующие, которые использовались в процессе сборки:
Понятно, что без элементарного инструментария нам не обойтись, поэтому перед началом сборки необходимо удостовериться, что у вас в наличии есть все необходимое:
- паяльник;
- припой;
- флюс;
- тестер;
- пинцет;
- различные отвертки и нож.
Интересный материал про изготовление своими руками, рекомендуем к просмотру
Тестер необходим для того, чтобы проверить работоспособность наши радиодетали. Для этого нужно сравнить их сопротивление, после чего сверить с номинальным значением.
Для сборки нам также понадобится корпус и батарейный отсек. Последний можно взять из детского симулятора Тетрис, а корпус может быть изготовлен из обычного пластмассового футляра (6,5см/4,5см/2см).
Крепим отсек для батарей на корпусе, используя шурупы. В качестве основы для схемы прекрасно подойдет плата от приставки Денди, которую нужно выпилить. Удаляем все ненужные компоненты, оставляя только гнездо питания. Следующим шагом будет пайка всех деталей, основываясь на нашей схеме.
Шнур питания для устройства можно взять обычный шнур от компьютерной мыши, обладающий входом USB, а также часть питающего провода со штекером. При пайке нужно строго соблюдать полярность, т.е. припаивать плюс к плюсу и т.д. Подключаем шнур к USB, проверяя напряжение, которое подается на штекер. Тестер должен показывать 5В.
В завершении нужно установить зарядный ток. Для этого необходимо разорвать цепь, соединяющую VD1 и плюсовую полярность аккумулятора. Подключаем тестер таким образом, чтобы его плюс соединялся с диодом, а минус — с аккумулятором. Выставляем режим измерения тока (200 мА).
Включаем в есть, после чего должен загореться светодиод, конечно, если все сделано правильно. Затем устанавливаем необходимый ток зарядки (100 мА), путем изменения сопротивления на резисторе R1. Проводим данную процедуру и для второго аккумулятора AA.
Еще одно интересное видео на это тему
Описание и принцип работы пуско-зарядного устройства
Здесь особо сложного ничего нет. Сетевое U = 220 В подаётся через выключатель на первичную обмотку трансформатора, а на вторичной происходит уменьшение переменного напряжения. Потом оно сглаживается двухполупериодным или мостовым выпрямителем, собранным на мощных диодах. Далее пульсирующее напряжение может быть отфильтровано посредством электролитических конденсаторов. При необходимости около выхода осуществляется увеличение напряжения, что делается с помощью усилителей, в которых основными компонентами являются транзисторы, тиристоры.
Из недостатков описываемого пуско-зарядного устройства можно отметить разве что солидный вес, что обусловлено установкой мощного и, как следствие, габаритного трансформатора. Ниже – схема двухполупериодного пуско-зарядного устройства своими руками:
В этой схеме задействован лабораторный трансформатор ЛАТР. Вместо двух диодов можно использовать и диодный мост типа КЦ405. Схема пуско-зарядного устройства для автомобиля с усилителем:
Как сделать пуско-зарядное устройство своими руками, чтобы оно наверняка заработало? Нужно соблюдать параметры деталей. Мощность указанных на картинке тиристоров – не менее 80 А (если будет использоваться диодный мост, то от 160 А). Диоды на ток – 100–200 А. Транзистор – КТ361 либо КТ 3102 (можно любой другой с такими же параметрами). Мощность используемых резисторов – от 1 Вт.
Собранное своими руками зарядно-пусковое устройство подключается через зажимы-крокодилы к АКБ в соответствии с полярностью. При нормально заряженной батарее с ПЗУ энергия поступать не будет. Если же АКБ не функционирует, тиристорный переход откроется, и зарядный ток пойдёт на батарею и стартер.
Расчёт обмоток трансформатора
Сначала нужно подобрать магнитопровод, сечение которого должно быть не меньше 37 кв. см. Чтобы рассчитать количество витков в первичной обмотке, необходимо воспользоваться формулами: Т = 30/S, где S – площадь магнитопровода и N = 220*Т, то есть W1 = 220*30/37 = 178 витков. Для обмотки необходимо использовать изолированный провод сечением не менее 2 кв. мм. Формула для вторичной обмотки: W2 = 16*Т = 16*30/37 = 13 витков. Здесь понадобится шина из алюминия площадью 36 кв. мм.
Стоит заметить, что формулы не всегда могут выдавать точное число обмоток (особенно вторичной), поэтому можно применить метод подбора. Намотав первичную обмотку, накрутите несколько витков вторичной и измерьте получившееся напряжение, не обрезая шину. Таким образом нужно добиться на выходе значения 14–16 В.
Дело будет обстоять проще, если у вас имеется ЛАТР – лабораторный трансформатор. От него нужно взять сердечник. Количество витков первичной обмотки – 265–295. Используйте изолированный провод сечением 2 мм. Намотку производите в три слоя. Далее обязательно проверьте значение тока холостого хода (включите мультиметр в разрыв между сетью 220 В и одним из концов обмотки). Прибор должен показывать 210–390 мА. Если показания больше, число витков нужно увеличить, в противном случае, наоборот, уменьшить. Вторичная обмотка разделена на две секции, в каждой из которых 15–18 витков. Здесь понадобится провод сечением 10 кв. мм.
Расчёт выпрямителя
Далее рассмотрены параметры электронных компонентов (помимо указанных выше), применяемых в обеих схемах:
- Диоды. Максимальный пропускаемый ток не должен быть менее 100 А. Это могут быть В200, Д141, 2Д141, 2Д151 и иные аналогичные детали. Вместо КД105 не возбраняется применять КД209 или даже Д226. Стабилитрон – Д808, 2С182 и т. п.
- Тиристоры. I = 80 А и более: ТС185, Т15-80, Т15-100, Т161, Т125 и т. п. Если используется вариант выпрямления тока с диодным мостом, тиристоры будут мощнее вдвойне: Т15, Т160, Т250, Т16 и другие, аналогичные.
- Транзисторы. Здесь важен коэффициент усиления h = 21э. Это КТ361 либо КТ3107 проводимостью n-p-n. Вместо КТ816 подойдёт и КТ814.
- Резисторы. Желательно, чтобы их мощность была не менее 1 Вт.
- Выключатель. Должен держать ток от 6 А.
Подбор сечения проводов
Подбирая выходные провода, которые будут присоединяться к аккумулятору, нужно помнить, что их диаметр не может быть меньше такого же параметра вторичной обмотки. Лучше использовать многожильный медный кабель, используемый в сварочных аппаратах, где каждый проводок имеет сечение 2,5 кв. мм. Такую же площадь должен иметь провод, посредством которого самодельный аппарат будет подключаться к сети. Не забудьте приобрести мощные зажимы-крокодилы для подключения к клеммам АКБ. Здесь тоже рекомендуется использовать изделия, применяемы при сварке («масса»).
Зарядное устройство из БП ноутбука
Можно соорудить зарядный девайс из блока питания ноутбука.
Величина выходного напряжения варьируется в районе 19 вольт, а значение силы тока составляет около 6 ампер. Этих параметров достаточно, чтобы обеспечить заряд аккумуляторной батареи, но напряжение слишком высокое. Решить проблему можно двумя способами.
Без переделки БП
Потребуется последовательным образом с аккумулятором машины подключить так называемый балласт в виде мощной лампы от оптики. Источник освещения будет использоваться в качестве ограничителя тока. Простой и доступный вариант. К плюсовому выходу блока питания ноутбука подключается один контакт лампы, а второй ее контакт подсоединяется к плюсу аккумуляторной батареи. Минус от блока питания подключается напрямую к отрицательной клемме аккумулятора по проводу. После этого БП можно включать в бытовую сеть. Способ очень простой, но есть вероятность выхода из строя источника освещения. Это приведет к неработоспособности как аккумулятора, так и блока.
Канал It’s simple опубликовал ролик, в котором наглядно показал, как выполнить подзарядку машинного аккумулятора с помощью обычного БП от ноутбука и лампочки.
С переделкой блока питания
Потребуется понизить параметр напряжения БП, чтобы напряжение на выходе составляло около 14-14,5 В.
Рассмотрим процесс изготовления и сборки зарядного девайса на примере блока питания от ноутбука Great Wall:
- Сначала следует разобрать корпус блока питания. При разборке не повредите его, поскольку он будет использоваться для дальнейшей эксплуатации. Плату, которая расположена внутри, можно подключить к вольтметру, чтобы точно узнать, какое ее рабочее напряжение. В нашем случае оно составляет 19,2 вольта. Используется плата, построенная на микросхемах TEA1751+TEA1761.
- Выполняется задача по снижению величины напряжения. Для этого потребуется найти резисторный элемент, расположенный на выходе. Нужна деталь, соединяющая шестой контакт схемы ТЕА1761 с положительным выводом блока питания. Этот резисторный элемент следует выпаять при помощи паяльника и произвести замер его сопротивления. Рабочий параметр составляет 18 кОм.
- Вместо демонтированного элемента устанавливается подстроечный резисторный компонент на 22 кОм, но перед впаиванием его следует настроить на 18 кОм. Аккуратно запаяйте деталь, чтобы не повредить другие элементы схемы.
- Постепенно понижая величину сопротивления, надо добиться того, чтобы на выходе параметр напряжения составил 14-14,5 вольт.
- Когда вы получите напряжение оптимальное для зарядки автомобильного аккумулятора, запаянный резистор можно отпаять. Производится замер его параметра сопротивления, в нашем случае он составляет 12, 37 кОм. По этой величине или близкой к ней подбирается постоянный резистор. Мы используем два резистора на 10 кОм и 2,6 кОм. Концы обеих деталей устанавливаются в термокембрик, после чего происходит их впаивание в плату.
- Полученную в итоге схему рекомендуем протестировать перед сборкой устройства. Параметр напряжения на выходе составит 14,25 вольт, этого достаточно для заряда батарейки.
- Приступаем к сборке девайса. Подключите провода с зажимами. Перед их впаиванием убедитесь в том, что на выходе соблюдается полярность. В зависимости от блока ноутбука, минусовой контакт может быть выполнен в виде центрального провода, а положительный — в виде оплетки.
- В итоге вы получаете девайс, который может правильно заряжать АКБ. Величина тока в ходе заряда варьируется в районе 2-3 ампер. Если этот параметр падает до 0,2-0,5 ампер, то процедуру подзарядки можно считать завершенной. Для более удобного использования ЗУ оборудуют амперметром, зафиксировав его на корпусе. Можно использовать светодиодную лампу, которая будет говорить автовладельцу о завершении процесса зарядки.
Канал kt819a предоставил ролик, в котором подробно рассмотрено зарядное устройство, сделанное из БП ноутбука.
https://youtube.com/watch?v=Ph1xw-hQu78
Настройка
Запускаем. Офигиваем от количества шума!
300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС
Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.
Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов
А теперь – с Y конденсатором:
Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!
Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.
Обратная связь.
Про нее я написал отдельную статейку, читайте
Охлаждение
Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.
В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.
Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.
Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.
Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!
Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.
Результаты
Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!
Потроха:
Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!
Как правильно зарядить АКБ самодельной зарядкой?
Чтобы батарея не вышла из строя, при восстановлении заряда соблюдают такие правила:
АКБ отсоединяют от бортовой сети автомобиля. Для этого снимают болты, удерживающие фиксатор аккумулятора. Устройство вынимают из гнезда и относят в отапливаемое помещение.
Корпус АКБ очищают от загрязнений
Особое внимание удаляют клеммам. Их очищают от остатков электролита зубной щеткой или наждачной бумагой
Главное – не удалить рабочее напыление.
Открыв банки АКБ, проверяют уровень электролита. Раствор должен полностью скрывать металлические пластины. При снижении уровня жидкости образуются газы, приводящие к взрыву. При необходимости банки заполняют дистиллированной водой.
Корпус осматривают на наличие сколов и трещин. При обнаружении крупных дефектов батарею заряжать нельзя.
При подключении зарядного прибора соблюдают полярность. Если все выполнено правильно, устройство подключают к сети. Снимать колпачки банок не нужно.
После восстановления заряда оценивают количество электролита. Если оно не изменилось, аккумулятор можно устанавливать в автомобиль.
Заключение
Основным плюсом девайса считается то, что автомобильная батарея не сможет перезарядиться в процессе подзарядки. Если вы забудете отключить АКБ от зарядного устройства, это не повлияет на ее ресурс эксплуатации и не приведет к быстрому износу. Если вы не оборудуете ЗУ светодиодным индикатором, то не сможете понять, зарядился ли аккумулятор или нет. Как вариант, можно приблизительно рассчитать время подзарядки, используя показания, которые выдает амперметр, подключенный к ЗУ. Рассчитать можно по формуле: величина силы тока умножается на время зарядки в часах. На практике на реализацию задачи по подзарядке требуется около суток при условии, что емкость батареи составляет 55 А/ч. Если вы хотите наглядно видеть уровень подзаряда, то в девайс можно добавить стрелочные или цифровые индикаторы.
Загрузка …