Что такое двигатель на водородном топливе, как собрать его своими руками
Содержание:
- Устройство и особенности работы
- Список автомобилей на водородном топливе
- Первым делом самолеты
- Факторы, сдерживающие внедрение водородных технологий
- Другие водородные автомобили
- Водородные топливные элементы
- Водород для тяжеловеса
- Как работают автомобили на водороде?
- Водородная энергия и технологии
- Перспективы
- Металлический водород
Устройство и особенности работы
Проблема бензиновых двигателей заключается в
том, что топливо горит долго и занимает пространство КС несколько ранее, чем
поршень принимает нижнее положение. Принцип работы водородного двигателя таков:
быстрая реакция H2 сдвигает время впрыска ближе ко времени возвращения поршня к
крайнему нижнему положению. При этом давление в структуре подачи топлива
повышается незначительно.
Водородный мотор может образовать внутреннюю
систему питания, когда смесь образуется без участия воздуха. Проще говоря,
после очередного такта сжатия в КС образуется пар, затем он следует через
радиатор, где, конденсируясь, опять становится водой. Но устройство может быть
реализовано только на автомобиле с электролизером, который выделяет водород из
воды, чтобы тот снова смог взаимодействовать с кислородом. Сейчас добиться
этого почти невозможно, ведь для стабилизации работы моторов применяется
техническое масло, а, испаряясь, оно становится составной частью выхлопа. Поэтому
бесперебойный запуск мотора невозможен без воздуха.
Устройство автомобиля с водородным двигателем
Список автомобилей на водородном топливе
Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.
Honda Clarity
Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.
Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.
Toyota Mirai
Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.
Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.
Ford Airstream
Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.
На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.
Mercedes-Benz GLC F-CELL
Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.
Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.
Pininfarina H2 Speed
Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.
BMW Hydrogen 7
Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.
Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.
Hyundai Nexo
Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.
Grove Obsidian
Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.
Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.
Другие авто
Ограниченно выпускают:
- Audi A7 h-tron quattro;
- Hyundai Tucson FCEV;
- Mazda RX-8 Hydrogen RE;
- Автобус Ford E-450;
- Низкопольные автобусы MAN Lion City Bus.
Испытывают:
- Focus FCV;
- Honda FCX;
- Nissan X-TRAIL FCV;
- Toyota Highlander FCHV;
- Volkswagen — space up!;
- Mercedes-Benz A-Class и Mercedes-Benz Citaro;
- Irisbus;
- Toyota FCHV-BUS;
- единичные модели в Чехии, Китае и Бразилии.
Первым делом самолеты
— Как и почему вы занялись самолетами?
— Дело в том, что после ухода «Норникеля» у нас наступило некоторое уныние, стало понятно, что российской промышленности в то время это не надо было и нам как-то придется своими силами во всем этом жить. Но помогла, опять-таки, случайность. Наши будущие коллеги в Центральном институте авиамоторостроения пытались сделать демонстратор маленького беспилотника на топливных элементах и закупили их в Сингапуре. Но, когда оказалось, что они плохо летают, они обратились к нам: что происходит? Мы внимательно прочитали инструкцию, и обнаружили, что эти элементы вообще при отрицательных температурах не работают. А то, что мы делали, вполне для этих целей годилось. То есть получалось, что мы можем просто поменять сингапурский элемент на свой, это мы с ЦИАМом и реализовали. И уже через год их беспилотники летали на наших топливных элементах, работающих в гораздо более широком интервале температур.
На тот момент это были игрушечные модельки, топливные элементы там стоят совсем маленькие. Но у ЦИАМа разыгрался аппетит, и они захотели сделать большие беспилотники и продемонстрировать их с рекордными характеристиками. И тогда началась наша работа с ними, с Объединенной авиастроительной корпорацией, над беспилотниками на наших топливных элементах.
— А для больших самолетов водородные элементы могут стать основным источником?
— Нет. Но мы знаем, что и Boeing, и Airbus изготавливают вспомогательную силовую установку самолета на основе топливных элементов, поскольку стало понятно, что литий-ионных аккумуляторов не хватает для больших самолетов. И мы обсуждаем такой вариант с ОАК.
Уже сейчас на многих европейских реках запрещено использовать двигатели внутреннего сгорания на судах. А у нас пока над этим никто особо не задумывается, хотя первый электроход был запущен у нас, в России, на Неве академиком Якоби в 1838 году
Но, если говорить о средней авиации, той, что называется региональной, то с большой вероятностью можно будет сделать самолеты пассажировместимостью от шести до двенадцати человек. Над такими проектами работа вовсю идет за рубежом из-за повышения норм экологической безопасности. В Европе, например, очень жесткие экологические нормы, и уже сейчас на многих европейских реках запрещено использовать двигатели внутреннего сгорания на судах. А у нас пока над этим никто особо не задумывается, хотя первый электроход (на гальванических элементах) был запущен у нас, в России, на Неве, академиком Якоби в 1838 году.
— И на чем же они плавают?
— На электричестве. Я в Австрии несколько лет назад с этим столкнулся, когда был в гостях у коллеги, и оказалось, что на конкретном озере и речке нельзя использовать ничего, кроме электродвигателей.
— На сколько такого элемента хватит применительно к самолетам?
— Американцы показали такие самолеты, которые летают где-то 500 километров на водородных элементах, что значительно дальше, чем на литий-ионных аккумуляторах, и уже почти везде достаточно для региональной авиации.
Но у наших авиаторов, в отличие от американских и европейских, сильный скепсис ко всему, что происходит в мире, поэтому создание двухместного самолета — это первый шаг, чтобы продемонстрировать, что это работает и этим можно пользоваться. ЦИАМ ведет проектную работу с учетом нашего опыта: как должна выглядеть установка для большого самолета. Но, насколько я понимаю, эта работа ведется в факультативном порядке, а здесь нужны значительные финансовые вложения, потому что это действительно очень сложная система. Но мы надеемся убедить авиаторов, что надо в это вкладываться.
Электромагнитный бот Якоби на Неве
Wikipedia
Факторы, сдерживающие внедрение водородных технологий
- отсутствие водородной инфраструктуры (частично эту проблему можно разрешить в частности устройством домашних заправок при частных жилых домах).
- несовершенные технологии хранения водорода (см. статью Хранение водорода);
- отсутствие стандартов безопасности, хранения, транспортировки, применения и т. д.;
- распространённые современные способы безопасного хранения водорода требуют большего объёма топливных баков, чем для бензина. Поэтому в разработанных на сегодняшний день автомобилях замена топлива на водород приводит к значительному уменьшению объёма багажника. Возможно в будущем эта проблема будет преодолена, но скорее всего за счёт некоторого увеличения габаритов легковых авто. (Для других классов автомобилей (автобусов, грузовых автомобилей, разнообразных специальных автомашин) проблема увеличения габаритов транспортного средства не столь остра. В частности на автобусах топливные элементы могут размещаться на крыше кузова, подобно тому как это делается например с троллейбусным электрооборудованием.)
Другие водородные автомобили
Mercedes-Benz GLC F-Cell
Этот внедорожник, первый водородный внедорожник Mercedes-Benz, доступен только в Германии и исключительно в аренду около 800 евро в месяц. Пока эта модель предназначена только для компаний, а не для частных лиц, и является пилотным проектом Mercedes. Он имеет автономию 478 километров, заряд его водородных отложений занимает всего три минуты. GLC представляет собой гибридный водородный плагин.
Riversimple Rasa
Rasa — это двухместная водородная машина с футуристическим дизайном и дальностью до 300 км. Разработанная уэльской компанией Riversimple, производство изначально ограничено несколькими автомобилями. Тем не менее, производитель надеется начать массовое производство к 2020 году.
Водородные топливные элементы
Водородный топливный элемент, с конструктивной точки зрения, является своеобразной аккумуляторной «батарейкой» с высокими показателями коэффициента полезного действия (порядка 50%). Внутри корпуса протекают физико-химических процессы с участием специальной мембраны, отвечающей за проведение протонов. Посредством такого мембранного элемента происходит деление корпуса на пару частей – резервуар с анодом и камеру с катодом.
Камера с анодом заполняется водородом, а в катодную часть поступает атмосферный кислород. В качестве покрытия электродов используются дорогостоящие редкоземельные металлы, включая платину. Особенности поверхности обеспечивают взаимодействие с водородными молекулами, в результате чего происходит потеря электронов. Одномоментно с этим процессом выполняется прохождение протонов сквозь мембрану к катоду. Благодаря такому воздействию катализатора протоны соединяются с поступившими извне электронами.
Результат произошедшей реакции – образование воды и поступление электронов из анодной камеры в электрическую цепь, подключённую к силовому агрегату. Таким образом, двигатель приводится в движение водородным топливным элементом и может проработать порядка 200-250 км. Тормозит применение такой технологии и серийный выпуск автомобилей с водородными двигателями необходимость использовать в конструкции элементов платину, палладий и другие дорогостоящие металлы.
Водород для тяжеловеса
Два последних года запомнились важными «водородными» новостями. Поговорим об известном проекте электрического грузовика Nikola One, представленного американской компанией Nikola Motor в 2016 году. История эта получила продолжение.
Итак, Nikola One. Грузовой электрокар, тягач с электроприводом и батареей емкостью 320 кВт·ч. На борту – собственная автономная электростанция. Электроэнергию вырабатывает система водородных топливных элементов.
Nikola One для американского рынка
Как заявил производитель, этот грузовик имеет автономный запас хода почти 1200 миль, по-нашему – 2000 км. И движется он с нулевой эмиссией отработавших газов – их просто нет, этих газов.
Изначально его планировали оснащать «удлинителем хода» – газотурбинным бортовым генератором, но потом все же остановились на ТЭ. Правда, для некоторых рынков возможность использования газотурбинного генератора все же оставили.
Заявленные характеристики тягача существенно превышают показатели большинства электромобилей, но есть и сомнения – хватит ли энергии силовой установки для перемещения 35-тонных грузов? На этот вопрос ответит практика эксплуатации. Но тут возникает еще одна проблема: где брать водород в достаточном количестве для парка Nikola One?
Компоновка тягача Nikola на водороде: 1 – система охлаждения; 2 – два электрических
мотор-редуктора для привода передних колес; 3 – блок высоковольтной и управляющей
электроники; 4 – тяговая батарея; 5 – ресивер пневматической тормозной системы и бак
системы охлаждения батареи; 6 – электрохимический генератор (топливные элементы
на 300 кВт); 7 – баки с водородом; 8 – задний мост с электродвигателем; 9 – седло
Фото: https://www.automobile-propre.com
Главный исполнительный директор (Chief Executive Officer) компании Nikola Motors Тревор Милтон (Trevor Milton) заявил, что концепция электрического грузовика Nikola One будет опираться на собственную водородную инфраструктуру. Она раскинется по всей территории Соединенных Штатов, захватив частично и Канаду. Компания намерена строить электролизные установки и транспортировать водород на заправки.
Не так давно Nikola Motor обрела партнера – компанию Nel ASA. Эта фирма поставляет для Nikola оборудование, помогая создать самую большую водородную топливную сеть в мире. Достаточно сказать, что в ней будут действовать 16 электролизных станций, работающих по технологии H2Station.
Уже знакомый нам г-н Тревор Милтон заявил, что заказ на поставку первых двух станций на основе щелочных электролизеров компания Nel ASA уже выполняет. Остальные 14 станций получат путевку в жизнь в ближайшее время.
Скотт Перри, один из ведущих специалистов Nikola Motor, рассказал, что компания Nel ASA поставляет водород в более чем 80 стран с 1927 года. «Мы уверены, что с таким опытным партнером наш проект будет успешным», – с оптимизмом заключил он.
Первоначально каждая станция будет производить до 8 т водорода в день. Однако объем выпуска может быть увеличен до 32 т в день. Кстати, каждый грузовик Nikola ежедневно будет потреблять около 50–75 кг водорода.
Интересная подробность: Nikola Motor намерена предоставлять свои заправки всем водородным транспортным средствам, а не только грузовикам собственной марки.
Прошло немного времени, и компания Nikola заявила, что будет производить не один, а два тягача – Nikola One и Nikola Two. Вторая модель отличается в первую очередь кабиной. Если у Nikola One имеется спальный отсек, то Nikola Two оснащен лишь компактной кабиной для перевозок, но не для отдыха.
С точки зрения энергетики Nikola Two не отличается от Nikola One. За кабиной находятся баллоны с водородом для питания электрохимического генератора. Он вырабатывает электрическую энергию для мотор-редукторов суммарной мощностью более 1000 л. с. По информации производителя, разгон до 60 миль/ч занимает не более 30 секунд, а пробег на одной заправке водородом составляет 1200 миль. Заправка же займет не больше 15 минут.
Nikola Two также ориентирован на американский рынок
В конце ноября 2018 года компания представили третью модель водородного грузовика. Она так и называется – Nikola Tre («три» по-норвежски). Если Nikola One и Nikola Two адресованы американскому рынку, то бескапотный Nikola Tre будет работать в Европе.
Nikola Tre для европейского рынка
Технические характеристики Nikola Tre практически не отличаются от двух первых моделей. Силовая установка мощностью от 500 до 1000 л. с., крутящий момент до 2000 Нм, запас хода до 1200 миль, продолжительность заправки примерно 20 минут.
Как работают автомобили на водороде?
Устройство водородного авто во многом напоминает устройство электрокара: тот же электрический двигатель, только аккумулятор получает питание не от электросети, а от результата химической реакции с участием водорода. Сама реакция протекает внутри ячеек своеобразных реакторов — топливных элементов. Из себя ячейка представляет пару пористых электродов (положительного катода и отрицательного анода), разделенных мембраной из полимера, на который тонким слоем нанесен катализатор.
Если представить схематически, то со стороны анода из специального баллона в систему подается водород, а со стороны катода — уже кислород. Их встреча вызывает химическую реакцию, в процессе которой протоны свободно уходят через полимерную мембрану, а электроны — задерживаются, создавая напряжение. Так возникает электричество, которое далее по цепи идет на электродвигатель, приводящий автомобиль в движение.
Как мы видим, выхлоп при такой химической реакции «нулевой» — чистый и безвредный водяной пар, этот момент очень нравится экологам. Подобное устройство также делает водородные автомобили независимыми от привычного техобслуживания — не надо менять опостылевшее масло или свечи. В чем еще один плюс и для экологии, и для кошелька водителя.
Но сложность в том, что водород в «готовой» для автомобиля форме практически не встречается на Земле. В основном, его добывают с помощью химических реакций из таких газов, как метан или пропан. И если сама работа автомобиля на водороде безвредна для окружающего мира, то при его добыче в атмосферу все равно выделяется вредный углекислый газ. В данное время еще не найден экологически чистый способ производство водорода, хотя процесс идет.
Автомобиль на водороде
Существуют и альтернативные способы добычи водорода:
• Из бурого угля — получение недорогого водорода. Однако сырье легко воспламеняется, отчего практически не транспортабельно.
• Из побочных промышленных отходов — их сегодня ровно столько, что полученного водорода хватит для заправки 250-750 тыс. автомобилей.
Таким образом, чтобы автомобили на водороде работали во всем мире, им требуется множество водородных заправок, их сейчас крайне мало. На сегодня водородные заправочные станции распространены лишь в США, Германии, Японии. В России на настоящий день только одна заправка — и та неофициальная. Причин такой малочисленности несколько, основное это:
• Водород — взрывоопасный элемент: хранение «топлива» требует повышенных мер безопасности, а значит — больших трат на постройку, обслуживание объекта, работу квалифицированного персонала.
• Взрывоопасность «топлива» требует соблюдения осторожности и при заправке. Поэтому на большинстве заправочных станций этот процесс автоматизировали, что также требовало немалых расходов
Электромобиль пока еще проигрывает автомашине с двигателем внутреннего сгорания, это:
• Ограниченный пробег электрокаров, небольшая дальность расстояний, которые можно проехать на одной зарядке.
• Пока еще малое количество зарядно-заправочных станций.
• Долгий процесс зарядки аккумулятора.
• Трудность эксплуатации при минусовых температурах.
Водородные автомобили имеют следующие возможности:
• Могут стабильно работать при -6° С. В экспериментальных условиях некоторые модели автомашины на водороде прекрасно работают и при -25° С.
• Наполнение баллонов автомобиля водородом занимает 3-5 минут.
• Привод на колеса неполный — ситуацию можно исправить только установкой на каждую ось по своему электромотору.
Водородная энергия и технологии
Как бы там ни было, но с подачи развитых государств компании начали активно работать с технологией получения электричества с помощью водорода. 20 декабря 2020 года 7 крупнейших мировых компаний по производству водорода и оборудования для работы с ним объявили о создании глобальной коалиции, которая в ближайшие 6 лет ускорит масштабирование и производство водорода в 50 раз. Это компании ACWA Power, CWP Renewables, Envision, Iberdrola (BMAD: IBE), Ørsted (NASDAQ Copehagen: ORSTED), Snam (BIT: SRG) и Yara (OSE: YARA).
Их цель — снизить себестоимость получения водорода до 2 USD за килограмм. Данная цена может стать переломным моментом, когда водород станет более предпочтительным видом топлива для трудоёмких предприятий, а также транспорта.
Apple запатентовала аккумулятор на водороде
Компания Apple (NASDAQ: AAPL) запатентовала водородные топливные ячейки для своих гаджетов, которые могут работать неделями на одной зарядке. Но на текущий момент не решены основные задачи: как хранить в ячейках достаточное количество водорода и что делать с водой, которая выделяется в процессе получения энергии.
Bosch разрабатывает топливные элементы на водороде
Компания Bosch запланировала выйти на рынок автомобильных топливных элементов, где хочет совершить технологический прорыв в разработке накопителей энергии для грузовых и легковых электромобилей.
Toyota запустила в серийное производство электрокар на водороде
В 2013 году автоконцерн Toyota Motor Corporation (NYSE: TM) представил публике водородный автомобиль Toyota Mirai, который был запущен в серийное производство, а в 2019 году вышло второе поколение данной модели.
В Германии запустили поезд на водороде
В Германии в 2018 году встал на рельсы поезд на водородных топливных элементах. К 2021 году планировалось запустить еще 14 таких поездов.
Яхта на водородном топливе
В 2017 году была спущена на воду первая в мире яхта под названием Energy Observer, которая вырабатывает и использует в качестве источника энергии водород. А в 2020 году стало известно, что Бил Гейтс (Bill Gates) заказал себе яхту, работающую на жидком водороде.
Где ещё используется водород?
Водородные станции используются на космических кораблях, в местах, где невозможно подвести электричество по проводам, в системе здравоохранения в качестве резервных источников питания и так далее. Водород активно использовался бы и в автомобильной промышленности по всему миру, если бы для этого была создана инфраструктура.
Перспективы
Использование такого газа как водород потенциально может открыть невероятные большие перспективы. Причём здесь речь идёт не только про автомобильный двигатель внутреннего сгорания, работающий на водороде, но и про целый ряд других сфер применения. В их числе авиация, железнодорожный транспорт, морские суда и пр. Помимо применения в ДВС, водород также может использоваться для питания и работы вспомогательной техники, механизмов и разного оборудования.
Уже сейчас ведущие автопроизводители уделяют большое внимание возможности внедрить в массовое производство водородные ДВС. Среди них такие гиганты как Volkswagen, General Motors, Toyota, BMW и пр. В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки
При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами
В настоящее время существуют автомобили, под капотом которых находятся водородные силовые установки. При этом они отлично функционируют, мало чем уступают традиционным ДВС на бензине и дизтопливе, а также обладают некоторыми существенными преимуществами.
Чтобы говорить о серьёзных перспективах и массовом внедрении водорода, требуется решить хотя бы несколько главных недостатков. Эксперты уверены, что при наличии способа уменьшить стоимость газа, а также при постройке большего количества АЗС и обучении кадров для обслуживания водородных моторов, множество таких машин обязательно станут нормой на дорогах.
Технологии-конкуренты
Автопроизводители пока не могут или не хотят в полной мере сконцентрироваться на водородных технологиях, поскольку у неё есть ряд серьёзных конкурентов.
Можно выделить следующие виды моторов, которые не дают водородным ДВС и топливным элементам на водороде развиваться, совершенствоваться и массово выходить на рынок.
- Гибридные установки. Это автомобили, способные использовать одновременно несколько источников энергии. Зачастую в машину внедряют обычный ДВС и электромотор. Также бывают варианты, когда обычный двигатель на бензине работает вместе с узлом, питающимся сжатым воздухом.
- Электрокары. Сейчас активно развиваются и распространяются полностью электрические авто. Это машины, которые двигаются за счёт работы одного или нескольких электромоторов. Они питаются от специальных аккумуляторов или топливных элементов. ДВС здесь не используют.
- Жидкий азот. Вещество помещается в специальные ёмкости. Сам процесс работы выглядит так. Топливо нагревается за счёт работы специального механизма. Это приводит к испарению и образованию газа высокого давления. Этот газ идёт в двигатель, где воздействует на поршни или роторы, передавая свою энергию. Пока такие авто не получили широкого распространения.
- Сжатый воздух. Здесь основой всей силовой установки выступает пневмодвигатель. Пневматический привод заставляет машину двигаться. Топливовоздушная смесь заменена на сжатый воздух. Эта система является частью современных гибридных автомобилей.
У водорода достаточно много конкурентов. И в настоящий момент самым главным соперником справедливо считается электродвигатель.
Насколько сильно ситуация изменится в ближайшие несколько лет, говорить сложно. О каких-то резких изменениях и открытиях говорить вряд ли стоит. Но есть вероятность того, что через 10-20 лет водород станет куда более эффективным и доступным. Тем самым начнут появляться серийные водородные автомобили в большом количестве. Примерно так сейчас обстоят дела с электрокарами.
Металлический водород
5 октября 2016 года в физической лаборатории Harvard University получили металлический водород. Для этого потребовалось давление 495 гигапаскаль. Если решить вопрос стабильности и охлаждения камеры сгорания (6000 К), то металлический водород станет самым перспективным ракетным топливом.
Ученые предполагают, что металлический водород позволит получить в двигателях импульс 1000-1700 секунд. (В современных ЖРД пока достигнут импульс 460 секунд). Плюс для хранения металлического водорода понадобятся маленькие баки, что позволит делать одноступенчатые ракеты для вывода полезной нагрузки в космос, это откроет новую эру освоения космического пространства!