Принцип работы дисковых тормозов
Содержание:
- Требования к прицепам категории «О»
- Эксплуатация и основные неисправности
- Устройство системы и принцип действия
- Рабочие тормозные системы грузовых автомобилей
- УСТРОЙСТВО ТОРМОЗНОГО ПРИВОДА
- Принцип работы тормозной системы
- Устройство тормозной системы автомобиля
- Типы креплений тормоза
- Основные неисправности тормозной системы
- Состав тормозной жидкости
- Инерционные роликовые стенды
- Классификация тормозных систем автомобиля
- Рабочая (основная) тормозная система
- Типы и устройство тормозных колодок
- Стояночная тормозная система легковых автомобилей
- Типы тормозных систем
Требования к прицепам категории «О»
Прицепам категории O1 не требуется собственная тормозная система, так как достаточно надежного соединения с тягачом. Прицепы категории О2 и выше должны оснащаться рабочей и стояночной тормозными системами, у которых могут быть общие компоненты. Распределение тормозных сил между отдельными осями предписано Директивой 71/320/ЕЕС. Распределение между осями должно быть направленным.
Прицепы категории О3 и выше (ЕСЕ), а также прицепы и полуприцепы со снаряженной массой более 3,5 т и максимальной скоростью более 60 км/ч (§41 b StVZO, с. 2), должны оснащаться антиблокировочной тормозной системой. Полуприцепы должны оснащаться ABS, если максимальная нагрузка на седло превышает 3,5 т.
Прицепы категории О3 (существующие типы), которые будут допущены к эксплуатации после 11.07.2014 или 01.11.2014, должны быть оснащены электронной системой динамической стабилизации (ESP). Для новых типов прицепов эти правила уже применяются с 01.11.2011 или с 11.07.2012 (правила ЕС 661/2009, приложение V, см. таблицы «Данные о вступлении в силу требований к тормозным системам для новых типов автомобилей» и «Данные о вступлении в силу требований к тормозным системам для новых автомобилей» ).
Прицепы категории О2 и ниже должны оснащаться инерционными тормозными системами. Прицеп должен тормозить автоматически, если во время движения он окажется отсоединен от тягача, или (у прицепов массой менее 1,5 т) должен быть оснащен надежным соединением с тягачом.
Эксплуатация и основные неисправности
Инструкция по эксплуатации содержит основные сведения о механизме транспорта, подготовке его к работе, правилах и периодичности обслуживания, основных неисправностях, принципах работы системы переключения передач, тормозного механизма. Следование рекомендациям производителя позволит продлить срок службы техники.
Немецкие механизмы отличаются высоким качеством и надежностью. Производитель заявляет о ресурсе в 1000 тыс. км пробега. Но это возможно только при периодическом обслуживании и правильной эксплуатации транспорта. Двигатель, выпускаемый в Германии, отличается требовательностью к качеству топлива. Особенности эксплуатации тягача КамАЗ-5490 Neo:
- необходимость в высоком качестве топлива;
- надежность устройства при грамотном обслуживании;
- возможность ремонтных работ только в сервисных центрах, которых в России мало.
При возникновении легких поломок можно использовать схему и руководство по ремонту для самостоятельных работ. В противном случае стоит обратиться в сервисную службу.
Коды ошибок
- Переключатель диагностики мотора на панели приборов удерживать в нижнем и верхнем положении более 2 секунд.
- После того как вы отпустите рычаг, посмотрите на светодиодный фонарь, он начнет мигать, сообщая комбинацию ошибки.
- При последующем нажатии на переключатель фонарь укажет следующую ошибку.
- Модернизированные приборы на КамАЗ Нео выводят коды в виде чисел.
- После ликвидации поломки необходимо сбросить ошибки. Для этого необходимо заглушить мотор, выключить зажигание, открыть капот. Потребуется отключить клемму «минус» у аккумулятора, через минуту поставить ее на место.
После этого процесс диагностики будет завершен, все ошибки будут удалены из памяти устройства.
Рассмотрим коды ошибок, встречающихся чаще всего:
- 4334. Расшифровка: отключение мочевины.
- Spn — нарушен контроль за подачей мочевины.
- 221 — сломана педаль подачи топлива. Необходимо проверить механизм на обрывы и замыкание.
- 334 — проблема в механизме управления наддувом. Следует убедиться в подключении исполнительного устройства наддува.
Диагностика КамАЗ-5490 проводится с помощью бортового компьютера, на котором можно видеть коды неисправностей. Зная причину проблемы, поломки можно устранить самостоятельно.
Электросхема
- устройство запуска силового агрегата;
- освещение кабины;
- поворотники, фары, аварийный сигнал;
- система очистки стекла, отопление и энергоснабжение;
- противоугонный механизм;
- панель приборов;
- аудиосистема;
- предохранительный блок;
- блок управления.
Данные узлы будут нормально функционировать только при удовлетворительном состоянии электрооборудования самосвала.
Не работают дворники
Система стеклоочистителей состоит из электрических механизмов и омывателей ветрового стекла. Электросхема указывает на порядок соединения узлов, переключателей, предохранителей и других элементов. Причина поломки может быть в моторчике, необходимо заменить щетки для нормального функционирования дворников.
Устройство системы и принцип действия
Основное в тормозной системе любого автомобиля – это тормозные механизмы и их приводы. Гидравлический тормозной привод, применяемый на легковых автомобилях, состоит из:
- педали в салоне;
- рабочих тормозных цилиндров передних и задних колес;
- вакуумного усилителя;
- трубопровода (тормозных трубок);
- главного тормозного цилиндра с бачком.
Принцип работы таков — водитель нажимает на педаль тормоза, приводя в движение поршень главного тормозного цилиндра. Поршень выдавливает жидкость в трубопроводы к тормозным механизмам, которые тем или иным образом создают сопротивление вращению колес, и таким образом происходит торможение.
Отпущенная педаль тормоза посредством возвратной пружины возвращает поршень назад, и жидкость перетекает обратно в главный цилиндр – колеса растормаживаются.
На отечественных заднеприводных автомобилях схема тормозной системы предусматривает раздельную подачу жидкости из главного цилиндра на передние и задние колеса.
На иномарках и переднеприводных ВАЗах применяется схема контура трубопровода «левое переднее – правое заднее» и «правое переднее – левое заднее».
Рабочие тормозные системы грузовых автомобилей
Рабочая тормозная система тягачей
Рабочая тормозная система грузового автомобиля, представляющая собой систему с дополнительным источником энергии (рис. «Структура пневматической тормозной системы с управлением прицепом» и «Пневматическая система двухосного прицепа с ABS» ), может работать со сжатым воздухом или с сочетанием пневматики и гидравлики.
В случае сбоя, например, повреждения тормозного контура, работающая часть системы должна сохранять способность достижения как минимум эффекта запасного торможения — с той же управляющей силой на обычном устройстве управления. Должна обеспечиваться возможность измерения эффекта, и на прицеп не должен влиять этот сбой, т.е. управляющий клапан прицепа должен иметь двухконтурную конструкцию. Эффект запасного торможения должен достигать не менее 50% от эффекта рабочей тормозной системы. Поэтому систему обычно делят на два тормозных контура, уже разделенных на стороне подача, хотя эта конфигурация законодательно предписана только в автобусах.
Подача энергии на прицеп должна гарантироваться даже во время торможения. Двухконтурная система стала обязательной после вступления в силу предписания RREG 71/320, но уже предлагалась и раньше под названием «Nato».
На прицеп по питающему шлангу непрерывно подается сжатый воздух под определенным давлением. Оно должно составлять от 6,5 до 8,0 бар у исправного тягача, независимо от рабочего давления тягача, регламентированного изготовителем. Прицеп должен быть заменяемым. Рабочей тормозной системой прицепа управляет второй трубопровод — тормозной. Этот трубопровод также регламентируется предписаниями, относящимися к заменяемости прицепа. Таким образом, давление в трубопроводе в режиме движения должно составлять 0 бар, а в режиме полного торможения — 6,0-7,5 бар.
Рабочая тормозная система прицепов
Прицеп имеет независимую рабочую тормозную систему, которая лишь частично требует эффекта запасного торможения. Согласно требованиям RREG 71/320, эффекты торможения рабочей тормозной системы в тягаче и в прицепе должны находиться в узком диапазоне допустимых отклонений как функция управляющего давления в тормозном трубопроводе, идущем к прицепу, т.е. они должны быть примерно одинаковы (расчетный диапазон отклонений RREG 71/320 и ЕСЕ R.13).
Тягачи и прицепы должны быть взаимозаменяемыми. Поэтому в Приложениях 2 RREG 71/320 и ЕСЕ R13 определены условия их совместимости. Соответственно, соотношение между замедлением и давлением на «тормозной» соединительной головке в диапазоне, изображенном на рис. «Схема совместимости тягача и прицепа» должно находиться в диапазоне 0,2-7,5 бар на «тормозной» соединительной головке. Эта схема применима только к тягачу и прицепу. Для всех остальных транспортных средств и их сочетаний существуют другие схемы.
УСТРОЙСТВО ТОРМОЗНОГО ПРИВОДА
Тормозной привод предназначен для передачи усилия от тормозной педали, на которую нажимает водитель при торможении, на колесные тормозные механизмы. Автомобили оснащаются гидравлическими тормозными приводами; рабочим элементом в них является тормозная жидкость.
Гидравлический привод содержит следующие элементы: педаль тормоза, рабочие тормозные цилиндры, главный тормозной цилиндр (рис. 3.10), тормозные трубки (шланги), вакуумный усилитель тормозов (правда, в старых машинах этот элемент отсутствует).
Для того чтобы замедлить движение или остановить автомобиль, водитель нажимает ногой на педаль тормоза. Через специальный шток это усилие поступает на поршень главного тормозного цилиндра, который, в свою очередь, давит на залитую в системе тормозную жидкость. Тормозная жидкость передает это усилие через топливные трубки и шланги на рабочие (колесные) тормозные цилиндры. Вследствие этого у тормозных цилиндров выдвигаются поршни, которые давят на тормозные колодки, прижимая их либо к тормозным дискам, либо к тормозным барабанам, в зависимости от используемой конструкции тормозов. Диск или барабан имеется у каждого колеса и непосредственно связан с ним, поэтому, когда колодки давят на вращающийся вместе с колесом диск (барабан), вращение колеса замедляется и, если водитель продолжает давить на педаль тормоза — полностью прекращается.
Недостатком гидравлического привода является то, что при разгерметизации тормозная жидкость полностью или частично вытекает из системы, что может привести к отказу тормозов. Для предотвращения такой ситуации в современных машинах применяются двухконтурные гидравлические тормозные приводы. Сущность их конструкции состоит в том, что они состоят из двух независимых контуров — отдельно для каждой пары колес. Отметим, что эти контуры не обязательно связывают колеса одной оси: например, левое переднее колесо может быть связано с правым задним, а правое переднее — с левым задним. Если по каким-то причинам отказывает один контур (например, вытекла тормозная жидкость, заклинило тормозной цилиндр и т. п.), то срабатывает второй. Разумеется, эффективность такого торможения заметно падает, но все же оно позволяет остановить автомобиль и избежать серьезных неприятностей.
Вакуумный усилитель тормозов (рис. 3.11) — прибор, который позволяет повысить эффективность работы тормозной системы, а также уменьшить усилие, с которым водитель должен давить на педаль для получения требуемого результата.
Этот усилитель связан непосредственно с главным тормозным цилиндром. Ключевой элемент вакуумного усилителя — камера, разделенная резиновой диафрагмой на две части. Одна часть камеры связана с впускным трубопроводом двигателя, в котором создается разряжение, вторая с атмосферой. В разряженном пространстве давление где-то на 20 % меньше атмосферного, и благодаря этому перепаду давлений, а также большой площади резиновой диафрагмы, создается эффект, позволяющий существенно снизить усилие при нажатии на педаль тормоза.
Принцип работы тормозной системы
Самая распространенная гидравлическая тормозная система работает достаточно просто, ниже, на видео-уроке детально показан принцип работы в 3Д анимации.
- Первой в цепочке элементов стоит педаль тормоза. Когда водитель нажимает на нее, давление передается на вакуумный усилитель тормозов;
- Вакуумный усилитель увеличивает давление и передает его на главный тормозной цилиндр, вдавливая поршень;
- От ГТЦ по трубопроводам гидравлическая жидкость поступает к цилиндрам суппортов. За счет несжимаемости жидкости, она почти мгновенно передает усилие от главного цилиндра на тормозные механизмы, и они приходят в действие;
- Рабочие цилиндры суппортов прижимают тормозные колодки к дискам или барабанам; Чем сильней водитель давит на педаль, тем больше и резче будет усилие на тормозах. Это дает возможность управлять автомобилем, чувствуя и рассчитывая силу торможения;
- Когда водитель отпускает педаль, система возвращается в нейтральное положение. Педаль становится на место благодаря возвратной пружине, давление в гидросистеме падает.
Устройство тормозной системы автомобиля
Тормозная система Основой тормозной системы являются тормозные механизмы и их приводы.
Тормозной механизм служит для создания тормозного момента, необходимого для торможения и остановки транспортного средства. Механизм устанавливается на ступице колеса, а принцип его работы основан на использовании силы трения. Тормозные механизмы могут быть дисковыми или барабанными.
Конструктивно тормозной механизм состоит из статичной и вращающейся частей. Статичную часть у барабанного механизма представляет тормозной барабан, а вращающуюся – тормозные колодки с накладками. В дисковом механизме вращающаяся часть представлена тормозным диском, неподвижная – суппортом с тормозными колодками.
Управляет тормозными механизмами привод.
Гидравлический привод не является единственным из применяемых в тормозной системе. Так в системе стояночного тормоза используется механический привод, представляющий собой совокупность тяг, рычагов и тросов. Устройство соединяет тормозные механизмы задних колес с рычагом стояночного тормоза. Также существует электромеханический стояночный тормоз, в котором используется электропривод.
Существуют и другие виды тормозного привода: пневматический, электрический и комбинированный. Последний может быть представлен как пневмогидравлический или гидропневматический.
Типы креплений тормоза
Для установки дисковых тормозов на велосипеде потребуются две вещи: втулка, имеющая крепление для тормозного диска (об этом чуть позже) и специальные крепления на раме и вилке, которые позволят закрепить суппорт тормоза. Можно выделить два самых популярных стандарта крепления: PM (Post Mount) и IS (International Standard). PM — тормоз крепится непосредственно к раме или вилке. В случае IS — понадобится дополнительный адаптер.
PM и IS стандарты крепление тормоза
В случае PM, если мы хотим использовать диск диаметром 160 мм, то блок крепится непосредственно к монтажным отверстиям, и адаптер не требуется. Если же устанавливается диск большего диаметра (если это позволяет производитель рамы или вилки), нам придется использовать адаптер.
Сейчас большинство терминалов изготавливаются по стандарту PM. Чтобы подключить их к IS стандарту, вам понадобится адаптер. Адаптер PM / IS можно легко купить в магазинах. При покупке адаптера вам необходимо подобрать его в соответствии с размером устанавливаемого диска.
Shimano Flat Mount
Недавно компания Shimano выпустила на рынок новую систему крепления тормозов под названием Flat Mount, используется она в основном на дорожных велосипедах. Система имеет лучшее соединение с рамой и более простую конструкцию. Крепление может быть совместимо с Post Mount через адаптер. Неизвестно, получит ли этот стандарт широкое распространение, но уже сейчас он присутствует на многих новых велосипедах.
Основные неисправности тормозной системы
В таблице ниже приведены наиболее распространенные неисправности тормозной системы автомобиля и способы их устранения.
Симптомы | Вероятная причина | Варианты устранения |
---|---|---|
Слышен свист или шум при торможении | Износ тормозных колодок, их низкое качество или брак; деформация тормозного диска или попадание на него постороннего предмета | Замена или очистка колодок и дисков |
Увеличенный ход педали | Утечка рабочей жидкости из колесных цилиндров; попадание воздуха в тормозную систему; износ или повреждение резиновых шлангов и прокладок в ГТЦ | Замена неисправных деталей; прокачка тормозной системы |
Увеличенное усилие на педаль при торможении | Отказ вакуумного усилителя; повреждение шлангов | Замена усилителя или шланга |
Заторможенность всех колес | Заклинивание поршня в ГТЦ; отсутствие свободного хода педали | Замена ГТЦ; выставление правильного свободного хода |
Состав тормозной жидкости
В автомобилях прошлого столетия применялась минеральная ТЖ (смесь касторового масла и спирта в отношении 1:1).
Использовать такие составы в современных автомобилях недопустимо из-за их высокой кинетической вязкости (густеют при -20°) и низкой температуры кипения (менее 100°).
Основой современных ТЖ является полигликоль (до 98%), реже силикон (до 93%) с добавлением присадок, улучшающих качественные характеристики основы, защищающих поверхности рабочих механизмов от коррозии и предотвращающих окисление самой ТЖ.
Смешивать разные ТЖ можно только в том случае, если они изготовлены на одной основе. В противном случае возможно образование эмульсий, ухудшающих эксплуатационные характеристики.
Инерционные роликовые стенды
Инерционные роликовые стенды имеют ролики, которые могут иметь привод от электродвигателя или от двигателя автомобиля. В последнем случае ведущие колеса автомобиля приводят во вращение ролики стенда, а от них с помощью механической передачи — и передние (ведомые) колеса.
После установки автомобиля на инерционный стенд линейную скорость колес доводят до 50…70 км/ч и резко тормозят, одновременно разобщая все каретки стенда путем выключения электромагнитных муфт. При этом в местах контакта колес с роликами (лентами) стенда возникают силы инерции, противодействующие тормозным силам. Через некоторое время вращение барабанов стенда и колес автомобиля прекращается. Пути, пройденные каждым колесом автомобиля за это время (или угловое замедление барабана), будут эквивалентны тормозным путям и тормозным силам.
Тормозной путь определяют по частоте вращения роликов стенда, фиксируемой счетчиком, или по продолжительности их вращения, измеряемой секундомером, а замедление — угловым деселерометром.
Метод, реализуемый инерционным роликовым стендом, создает условия торможения автомобиля, максимально приближенные к реальным. Но в силу высокой стоимости стенда, недостаточной безопасности, трудоемкости и больших затрат времени, необходимого для диагностирования, стенды такого типа нерационально использовать при проведении диагностирования на автопредприятиях и при гостехосмотре.
Классификация тормозных систем автомобиля
На современных автомобилях устанавливаются три-четыре вида тормозных систем:
- рабочая;
- стояночная;
- вспомогательная;
- запасная.
Основная и самая эффективная тормозная система автомобиля – рабочая. Она используется во всё время движения для регулирования скорости и полной остановки. Ее устройство довольно простое. Приводится она в действие нажатием на педаль тормоза правой ногой водителя. Такой порядок обеспечивает одновременный сброс оборотов двигателя, за счет снятия ноги с педали акселератора, и торможение.Стояночная тормозная система , как следует из названия, предназначена для обеспечения неподвижности транспортного средства во время длительной стоянки. На практике опытные водители оставляют машину с включенной первой или задней передачей. Однако на больших склонах этого может оказаться недостаточно.
Ручной стояночный тормоз используют также при трогании с места на неровных участках дороги, когда правая нога должна быть на педали газа, а левая выжимает сцепление . Плавно отпуская рукой рычаг тормоза, включая одновременно сцепление и прибавляя газ, удается предотвратить произвольное скатывание автомобиля под уклон.
Запасная тормозная система призвана дублировать основную рабочую в случае её отказа. Это может быть полностью автономное устройство, или представлять собой часть, один из контуров тормозного привода. Как вариант, функции запасной может выполнять стояночная система.
Вспомогательная тормозная система устанавливается на большегрузных автомобилях, например, на отечественных КамАЗах, МАЗах, КрАЗах. Она предназначена для снижения нагрузки на основную рабочую систему во время длительного торможения – при движении в горах или по холмистой местности.
Рабочая (основная) тормозная система
Главное предназначение рабочей тормозной системы заключается в регулировании скорости движения автомобиля вплоть до его полной остановки.
Основная тормозная система состоит из тормозного привода и тормозных механизмов. На легковых автомобилях применяется преимущественно гидравлический привод.
Гидропривод состоит из:
Главный тормозной цилиндр преобразует усилие, сообщаемое водителем педали тормоза, в давление рабочей жидкости в системе и распределяет его по рабочим контурам.
Для увеличения силы, создающей давление в тормозной системе, гидропривод оснащается вакуумным усилителем.
Регулятор давления предназначен для уменьшения давления в приводе тормозных механизмов задних колес, что способствует более эффективному торможению.
Контуры тормозной системы, представляющие собой систему замкнутых трубопроводов, соединяют между собой главный тормозной цилиндр и тормозные механизмы колес.
Контуры могут дублировать друг друга или осуществлять только свои функции. Наиболее востребована двухконтурная схема тормозного привода, при которой пара контуров работает диагонально.
Типы и устройство тормозных колодок
Сегодня существует два типа тормозных колодок:
- Для барабанных тормозных механизмов;
- Для дисковых тормозных механизмов.
Колодки для барабанных тормозов имеют выполненную по радиусу рабочую поверхность, и их конструкция разрабатывается с учетом особенностей установки в тормозном барабане. Такие колодки используются на грузовых автомобилях и на многих легковых автомобилях с барабанными тормозами на задней оси.
Колодки для дисковых тормозов плоские и имеют меньшие габариты, их конструкция разрабатывается под возможность установки в суппорт. Такие колодки используются в передних тормозных механизмах всех современных легковых автомобилях и во многих грузовых, а в последние годы все чаще дисковые тормоза используются и на задней оси легковых и коммерческих автомобилях.
Но независимо от типа все колодки имеют принципиально одинаковое устройство. Основой колодки выступает металлический каркас той или иной формы (определяется типом и назначением колодки), в котором предусмотрены отверстия для установки колодки в тормозной механизм. На одной из сторон колодки (в барабанной колодке — на ее выпуклой части) находится фрикционная накладка, которая обладает высоким коэффициентом трения с металлом, и обеспечивает торможение при контакте с барабаном или диском. Накладки на современных дисковых колодках приклеиваются на специальный клей, а на колодках для отечественных грузовиков с барабанными тормозами накладки крепятся с помощью заклепок из мягкого металла.
Именно во фрикционной накладке заключается вся сложность особенность тормозных колодок. Для эффективного торможения накладка должна иметь высокий коэффициент трения о стальную, чугунную или алюминиевую поверхность барабана или диска. Поэтому накладки изготавливаются из сложных композитных материалов, ?рецепт? которых у каждого производителя свой и чаще всего является коммерческой тайной. Однако в общем случае накладка изготавливается из полимерных композиций, в ее состав могут добавляться минеральные (например, асбест, который сегодня запрещен) или органические волокна, стружка из мягких металлов (в основном используется медь, которая хорошо отводит тепло) и другие добавки.
Для чего нужны такие сложности? Дело в том, что колодки работают в сложных условиях, поэтому их фрикционные накладки должны не просто обладать высоким коэффициентом трения, а обеспечивать эффективное торможение в самом широком интервале температур (практически от -50 до +300°C), при резких перепадах температур, при попадании воды, в условиях повышенного запыления, в присутствии различных химических веществ и т.д.
Кроме того, использование специальной фрикционной накладки значительно понижает уровень шума при трении колодки о тормозной диск или барабан. Использовавшиеся на заре автомобилестроения стальные колодки издавали интенсивный скрип и другие неприятные звуки, которые не доставляли удовольствия. Сегодня же тормоза работают практически бесшумно.
С течением времени фрикционная накладка изнашивается, ее толщина уменьшается, и в какой-то момент колодка перестает эффективно выполнять свои функции — в этом случае необходимо произвести ее замену. Сегодня все чаще используются колодки, оснащенные датчиками и индикаторами износа — такое решение помогает производить своевременную замену тормозных колодок без постоянного контроля их толщины.
Датчики износа колодок бывают:
- Электронные (как раз их и называют датчиками);
- Механические (чаще всего их называют индикаторами).
В качестве электронного датчика выступает контакт, встроенный в массу фрикционной накладки на определенной глубине от ее рабочей поверхности. При износе колодки датчик оголяется, и при контакте с тормозным диском на приборной панели загорается соответствующий индикатор — в этом случае следует произвести замену колодок.
В качестве механического индикатора выступает простая металлическая скоба, установленная сбоку колодки на определенной высоте от рабочей поверхности фрикционной накладки. При износе колодки скоба постепенно приближается к тормозному диску, и в какой-то момент начинает о него тереться. В этом случае скоба начинает вибрировать и издавать характерный дребезжащий звук, напоминающий водителю о необходимости заменить колодку.
Стояночная тормозная система легковых автомобилей
Предназначение ручного, или стояночного тормоза — это удержание авто на стоянке, даже под определённым уклоном. По-простому, чтобы он не уехал самостоятельно после парковки. Также его называют парковочным тормозом, опытные водители часто называют просто ручником. В экстренной ситуации, при поломке основной системы торможения ручник допустимо использовать для уменьшения скорости и остановки транспорта. Стояночный тормоз приводится в действие посредством рукоятки усилием руки водителя, иногда ногой с помощью специальной педали (ножной стояночный тормоз). Чтобы обеспечить эффективную работу парковочного тормоза оптимально располагать его тормозные элементы на наиболее нагруженной оси либо нескольких осях при необходимости. В основном это задняя ось транспортного средства. Тип привода — механический, рукояткой водитель натягивает тросик, он притягивает колодки к барабану либо диску посредством тягового механизма. Также встречается электропривод, от водителя требуется только нажать на соответствующую кнопку.
Типы тормозных систем
Итак, тормоза автомобилей бывают двух типов: барабанные и дисковые. Исторически первыми стали применяться барабанные тормоза, то есть такие, в которых полукруглые колодки изнутри распирают закрытый металлический цилиндр. В таком виде, лишь с небольшими изменениями, эти тормоза существуют уже более 100 лет. В чем же причина успеха?
Главное конструктивное преимущество барабанных тормозов – большая площадь поверхности колодок, которые прилегают к барабану почти на двух третях окружности. Отсюда, в частности, следует увеличенный ресурс самих колодок и отсутствие необходимости в высоком давлении в тормозной системе – некоторое время назад, примерно до 40-ых годов, это позволяло даже обходиться без усилителя тормозов. Сказывается здесь и эффект «самоусиления», когда под действием силы трения колодки слегка поворачиваются вокруг оси и еще сильнее прижимаются к вращающемуся барабану. Разумеется, сейчас эти хитрости уже неважны – усилитель тормозов давно стал неотъемлемой деталью, но вот большой ресурс колодок весьма кстати для недорогих машин. Именно поэтому барабанные тормоза до сих иногда применяются на задней оси, где в условиях постоянно летящей пыли из-под передних колес проявляется и еще одно их достоинство – лучшая защищенность от грязи, ускоряющей, как известно, износ тормозов.
Однако на передней оси, где загруженные в момент замедления колеса обладают наилучшим сцеплением с дорогой, а значит и тормозам приходится тяжелее всего, барабанные механизмы уже не встретишь. Причина – недостаточное охлаждение, поскольку внутренняя сторона барабана закрыта, и эффективно рассеивает тепло лишь внешняя часть. При этом компенсировать падение коэффициента трения повышением усилия прижима колодок можно лишь весьма ограниченно, ведь барабан имеет далеко не бесконечную прочность на разрыв.
Конечно, можно как-то пытаться найти выход. Вспоминаются, например, тормоза гоночных болидов 40-ых годов – огромные барабаны размером чуть ли не с колесо, вентиляционные отверстия с одной стороны и оребрение с другой. Сколько же они весили… Чтобы как-то уменьшить неподрессоренные массы инженеры даже пытались крепить барабаны внутри кузова, передавая тормозной момент через приводные валы. Сейчас, конечно, такого уже не встретишь – вес уменьшают, отливая барабан из сплава алюминия и запрессовывая в него чугунное кольцо, к которому прилегают колодки.
С дисковыми тормозами подобных проблем на порядок меньше: диск ничем не прикрыт, охлаждаемая площадь большая. Дополнительно, для лучшего охлаждения, диски делаются не сплошными, а вентилируемыми – фактически сдвоенными со специальными воздушными каналами посередине, играющими роль центробежного вентилятора. Перегреть такие тормоза – уже непростое дело. К тому же здесь практически нет проблем, связанных с прочностью, как в случае с барабаном, — давление колодок на диск почти не ограничено.
Однако есть и свои трудности, например, возможный перегрев тормозной жидкости. Небольшие по площади колодки сильно греются, и это тепло активно передается жидкости – если она закипит, давление в магистрали упадет, и педаль тормоза просто «провалится»
без какого-либо эффекта. И хотя с современными жидкостями с температурой кипения более 250 оС такой сценарий уже маловероятен, при проектировании очень мощных автомобилей все же необходимо учитывать и это. Решение находят в увеличении размера колодок – иногда они обхватывают едва ли не треть диска! При этом для равномерного распределения прижимного усилия приходится применять и массивные многопоршневые суппорты.
По той же причине – малые размеры колодок — дисковые тормоза чаще барабанных нуждаются в смене колодок, а для работы им необходим мощный усилитель, развивающий высокое давление в тормозной магистрали. Впрочем, это разумная плата за эффективность и высокую активную безопасность.