Устройство системы питания автомобиля

Общее устройство ТНВД

  • Корпус.
  • Крышки.
  • Всережимный регулятор
  • Муфта опережения впрыска.
  • Подкачивающий насос.
  • Кулачковый вал.
  • Толкатели.
  • Плунжеры с поводками или зубчатыми втулками,
  • Гильзы плунжеров.
  • Возвратные пружины плунжеров.
  • Нагнетательные клапаны.
  • Штуцеры.
  • Рейка.

Принцип действия ТНВД

Вращение кулачковый вал получает через муфту опережения впрыска и зубчатую передачу от коленчатого вала. При вращении кулачкового вала кулачок набегает на толкатель и смещает его, а он в свою очередь, сжимая пружину, поднимает плунжер. При поднятии плунжера он вначале закрывает впускной канал, а затем начинает вытеснять топливо, находящееся над ним. Топливо вытесняется через нагнетательный клапан, открывшийся за счёт давления, и поступает к форсунке.

В момент движения плунжера вверх винтовой канал, находящийся на нём, совпадает со сливным каналом в гильзе. Остатки топлива, находящиеся над плунжером, начинают уходить на слив через осевой, радиальный и винтовой каналы в плунжере и сливной в гильзе. При опускании плунжера за счёт пружины открывается впускной канал, и объём над плунжером заполняется топливом от подкачивающего насоса.

Изменение количества подаваемого топлива к форсунке осуществляется поворотом плунжеров от рейки через всережимный регулятор. При повороте плунжера, если винтовой канал совпадёт со сливным раньше, то впрыснуто топлива будет меньше. При обратном повороте каналы совпадут позже, и впрыснуто топлива будет больше.

На некоторых ТНВД (например, ТНВД трактора Т-130) часть секций отключается на холостых оборотах, соответственно, отключается и часть цилиндров двигателя.

Дополнительные агрегаты ТНВД

Муфта опережения впрыска — служит для изменения угла опережения впрыска в зависимости от оборотов. По принципу действия является механизмом, использующим центробежную силу. Устройство:

  • Ведущая полумуфта.
  • Ведомая полумуфта.
  • Грузы.
  • Стяжные пружины грузов.
  • Опорные пальцы грузов

Принцип действия муфты следующий. При минимальных оборотах грузы за счёт пружин стянуты к центру и положение между муфтами является исходным, при этом угол опережения впрыска находится в пределах отрегулированного параметра. При увеличении оборотов центробежная сила в грузах возрастает и разводит их, преодолевая сопротивление пружин. При этом муфты поворачиваются относительно друг друга и угол опережения впрыска увеличивается.

Всережимный регулятор — служит для изменения количества подачи топлива в зависимости от режимов работы двигателя: запуск двигателя, увеличение/уменьшение оборотов, увеличение/уменьшение нагрузки, остановка двигателя. Устройство:

  • Корпус.
  • Крышки.
  • Державка.
  • Грузы.
  • Муфта.
  • Рычаги.
  • Скоба-кулисы.
  • Регулировочные винты.
  • Оттяжные пружины.

Принцип действия регулятора следующий:

  • Запуск двигателя: перед запуском рейка за счёт пружины находится в положении максимальной подачи топлива, поэтому при запуске в двигатель подаётся максимальное количество топлива. Это способствует быстрому запуску. Как только двигатель начнёт развивать обороты, и центробежная сила в грузах начнёт расти, они, преодолевая сопротивление пружин, начнут расходиться в стороны и внутренними своими рычагами давить на муфту, которая будет воздействовать на рычаг, а рычаг будет тянуть рейку в сторону уменьшения подачи топлива. Обороты установятся в соответствии с натягом пружин.
  • Увеличение оборотов: при нажатии на педаль «газа» натягивается пружина, которая действует на рычаг рейки и муфту. Муфта и рейка смещается, при этом преодолевается центробежная сила в грузах. Рейка смещается в сторону увеличения подачи топлива, и обороты растут.
  • Увеличение нагрузки — при увеличении нагрузки и неизменном положении педали «газа» обороты снижаются, центробежная сила в грузах тоже. Грузы складываются и дают возможность сместиться муфте, рычагу и рейке в сторону увеличения подачи топлива. При снижении нагрузки обороты начинают увеличиваться, центробежная сила в грузах тоже, грузы начинают расходится и внутренними рычагами смещать муфту, рычаг и рейку в сторону уменьшения подачи топлива. Обороты при этом прекращают расти.
  • Остановка двигателя — при остановке двигателя поворачивается скоба, кулиса скобы воздействует на рычаг, а рычаг — на рейку. Рейка перемещается настолько в сторону уменьшения подачи, что подача прекращается, и двигатель останавливается

Работа комбинированной системы впрыска

Комбинированная системы впрыска осуществляет работу в зависимости от изменения нагрузки на двигатель и его режимов работы. При пуске и прогреве двигателя, а также при работе с максимальными нагрузками вступает в работу система непосредственного впрыска. Для оптимальной работы двигателя система впрыска производит необходимое количество впрысков топлива:

  • При запуске – три впрыска (такт сжатия);
  • При работе на холодном двигателе – один впрыск (такте впуска);
  • При прогреве двигателя и работе с максимальной нагрузкой – два впрыска (один во время такта впуска, а другой во время такта сжатия).

Система распределенного впрыска срабатывает при частичной нагрузке двигателя. Представленный режим работы двигателя характерен для городского движения, при котором часто производятся частичные остановки и трогание автомобиля с места. При работе двигателя в режиме распределенного впрыска комбинированная система периодически задействует форсунки непосредственного впрыска, чтобы исключить вероятность их засорения.

Системы питания автомобиля следует классифицировать по представленным признакам:

•  способу подачи топлива , может быть как непрерывный, так  и прерывистый;• типу дозирующих узлов — (плунжерные насосы,форсунки, распределители,  регуляторы давления;• по способу регулировки горючей смеси, и ее количества — пневматическое, механическое, электронное;• по параметрам смесеобразования — разряжению во впускной системе, углу поворота дроссельной заслонки, расходу воздуха.

Впрыск топлива обеспечивает более точное распределение по цилиндрам из за отсутствия сопротивления потоку воздуха на впуске. Более высокий коэффициент наполнения цилиндров обеспечивает получение более высокой мощности двигателя. При впрыске возможно большее перекрытие клапанов. Лучшая продуваемость и равномерность смесеобразования по цилиндрам снижают температуру деталей, что в свою очередь позволяет уменьшить октановое число топлива на 2—3 единицы, т. е. поднять степень сжатия без опасности детонации.Система впрыска К-Jetronic, которую разработала фирма «BOSCH»  работает по принципу механической системы, где обеспечивается постоянный впрыск топлива и включает в себя топливный бак, пусковую электромагнитную форсунку. топливный электронасос, топливный фильтр, накопитель топлива, расходомер воздуха с напорным диском,  регулятор давления топлива, регулятор управляющего давления воздуха, дозатор распределительного топлива,форсунки. Количество смешиваемого воздуха и топливо строго в соотношении 1 к 14,7. Во время работы двигателя топливный электро насос закачивает бензин из бака и нагнетает  его с давлением 0,5 МПа) , а потом через накопитель и попадает в фильтр к дозатору распределителя. После этого топливо постепенно  подается  к форсункам, установленным перед впускными клапанами во впускном трубопроводе. Форсунки призваны непрерывно распылять топливо. Если при карбюраторном питании дроссельная заслонка регулирует количество подаваемой в цилиндры горючей смеси, то при системе впрыска дроссельная заслонка регулирует только подачу чистого воздуха. Для того чтобы установить требуемое соотношение между количеством поступающего воздуха и количеством впрыскиваемого бензина, используется расходомер воздуха с напорным диском и лоза-тор-распределитель топлива.При пуске холодного двигателя электронасос быстро повышает давление топлива. Если температура двигателя менее 35 °С, термореле включает пусковую форсунку с электромагнитным управлением, и она впрыскивает дополнительное количество топлива. Одновременно включается добавочный клапан воздуха. Этим обеспечивается надежный пуск холодного двигателя и устойчивая его работа на холостом ходу. Продолжительность работы пусковой форсунки определяет термореле. При температуре выше 35 °С она отключается.Во время работы  двигателя с частичными нагрузками горючая смесь начинает обогащаться или обедняться. Самое главное, чтобы пропорция воздуха и топлива обеспечивала хорошее смесеобразование в определенных значениях, что бы полностью соответствовала режимам работы двигателя. В случае большого давления , сопротивление на плунжере увеличивается , а смесь в свою очередь обедняется. В другом  случае сопротивление перемещению плунжера начинает  уменьшается и  смесь начинает обогащаться.Во время резкого открытия  дроссельной заслонки обогащение горючей смеси обеспечивается еще секундной реакцией напорного диска.

Система впрыска топлива «К-Jetronic»:

1 — топливный бак; 2— топливный фильтр; 3 — накопитель топлива; 4 — топливный насос; 5 — регулятор управляющего давления; 6 — термореле; 7 — пусковая электромагнитная форсунка; 8 — форсунка впрыска; 9 — клапан добавочного воздуха; 10 — дроссельная заслонка; 11 — регулировочный винт системы холостого хода; 12 — расходомер воздуха; 13 — дозатор-распрелитель; 14 — регулятор давления топлива; а — канал подвода топлива к рабочим форсункам; 6 — канал подвода топлива к дозатору-распределителю; в — канал подвода топлива к пусковой форсунке с электромагнитным управлением; г — канал слива топлива в бак; д — канал толчкового клапана; е — канат управляющего давления.

Главная дозирующая система и система холостого хода системы впрыска «К-Jetronic»: 1 — топливный бак; 2 — топливный фильтр; 3 — накопитель топлива; 4 — топливный насос; 5— регулятор управляющего давления топлива; б — форсунка (инжектор); 7— регулировочный винт системы холостого хода; 8 — дроссельная заслонка; 9 — напорный диск расходомера воздуха; 10 — дозатор-распределитель топлива; 11 — регулятор давления питания; а — канал подвода топлива к форсункам; б — канал управляющего давления; в — канал толчкового клапана; г — канал слива топлива в бак; д — канал подвода топлива к дозатору-распределителю.

Непосредственный впрыск

Как бы то ни было, морально устаревший механизм карбюратора уже давно ушел в прошлое. На смену ему приходят системы, которые полностью или частично лишены его недостатков, но взамен имеют более сложное для понимания устройство.

Основным функциональным элементом таких систем является клапан регулировки давления. Задача клапана подстройки давления — постоянный контроль над состоянием, в котором пребывает топливная система, и изменение ее характеристик таким образом, чтобы горение топлива в цилиндрах было наиболее эффективным и целесообразным.

Клапан регулировки давления ДВС связан с ЭБУ, о котором было сказано выше. ЭБУ способен давать клапану сигналы об изменении давления топлива как в большую, так и в меньшую сторону. Чем выше давление топлива, которое обеспечивает клапан, тем интенсивнее работает топливная система ДВС, и тем выше обороты двигателя в конечном счете.

Но стоит также подумать и о том, что влияет на работу системы питания и что способно изменять решения ЭБУ относительно режима ее работы. Для ответа на этот вопрос стоит выяснить, какие датчики системы питания присутствуют на современном автомобиле и на что они влияют.

Во-первых, на любом современном ДВС, оборудованном системой непосредственного впрыска, присутствует датчик температуры охлаждающей жидкости. О чем это позволяет судить? Очевидно, что чем выше такая температура, тем более прогрет двигатель и тем лучше способен выполнять свои функции. Холодный мотор, который находится в режиме прогрева, требует более обогащенной топливной смеси. Это позволяет ДВС быстрее прийти в состояние работоспособности и выдать весь свой потенциал.

Кроме того, присутствует датчик внешней температуры, который позволяет судить о том, каковы условия эксплуатации двигателя внутреннего сгорания. Если температура опустилась намного ниже нуля, то в систему следует подавать максимально богатую топливную смесь с целью дать мощный толчок поршням при запуске.

Это позволяет решить такую проблему карбюратора, как трудность запуска зимой, и прочие проблемы, которыми уже не обладает система непосредственного впрыска. Существует еще целый ряд датчиков, которые позволяют работать системе в оптимальном режиме. В конечном счете это привело к снижению расхода топлива и более высокому ресурсу ДВС, о котором раньше приходилось лишь мечтать.

Устройство комбинированной системы впрыска

Комбинированная система впрыска состоит из следующих элементов:

  • Система непосредственного впрыска (форсунки, топливная рампа высокого давления);
  • Система распределенного впрыска (форсунки, топливная рампа низкого давления);
  • Топливный насос высокого давления.

Такие элементы системы непосредственного впрыска, как форсунки, устанавливаются непосредственно в камерах сгорания цилиндров. Топливная рампа высокого давления поддерживает давление 20 МПа. Форсунки системы распределенного впрыска устанавливаются перед впускными клапанами в каналах впускного коллектора.

Аккумуляторная система питания топливом

Современные жесткие требования к уровню выбросов вредных веществ двигателями внутреннего сгорания вынудили конструкторов дизелей искать новые решения в области топливной аппаратуры для них. Дело в том, что даже самые совершенные ТНВД не могут обеспечить такого давления топлива, при котором оно распылялось бы настолько мелко, что могло бы полностью сгореть в камере сгорания.

Неполное сгорание приводит к большему расходу топлива, а самое главное — к повышению в отработавших газах концентрации вредных веществ, в частности сажи. В связи с этим в настоящее время для дизелей с непосредственным впрыском все чаще применяется так называемая аккумуляторная система питания топливом.

Основное отличие такой системы от «классической» заключается в наличии общей топливной рампы (аккумулятора давления), в которой во время работы двигателя создается очень высокое давление.

Топливная рампа соединена трубопроводами высокого давления с электронно-управляемыми топливными форсунками, иглы которых перемещаются с помощью электромагнитов по сигналам от компьютера (электронного блока) управления двигателем. Такая система питания топливом позволяет оптимизировать работу двигателя практически по всем параметрам.

Устройство и работа системы вентиляции и улавливания паров.

Все виды жидкого горючего склонны к испарению и температурным изменениям объёма, что вызывает несоответствие между атмосферным давлением и давлением в баке.

В карбюраторных и дизельных моторах до эпохи «Евро-II» эту проблему решало «дыхательное» отверстие в пробке заливной горловины.

Баки автомобилей с впрысковым («инжекторным»)двигателем оборудованы замкнутыми системами вентиляции, не имеющими прямого сообщения с атмосферой.

Впуском воздуха, при понижении давления в баке, заведует впускной клапан, открывающийся давлением наружного воздуха, и закрывающийся после уравнивания давлений внутри и извне.

Пары топлива, образующиеся в баке, по вентиляционному трубопроводу на работающем моторе засасываются впускным трубопроводом и сгорают в цилиндрах.

При заглушенном двигателе пары бензина улавливаются сепаратором, конденсат из которого стекает обратно в бак, и поглощаются адсорбером.

Топливный бак требует технического обслуживания, которое заключается в проверке герметичности его систем и очистке бака от загрязнений. В стальных ёмкостях к осадкам, выпавшим из бензина или солярки, могут добавляться и продукты коррозии, ржавчина.

Очистку и промывку бака рекомендуется проводить при каждом вскрытии монтажного проёма, отвернув сливную пробку.

Пользоваться различными «средствами для очистки топливной системы» без вскрытия ТБ специалисты не советуют, смытые со дна и стенок отложения через топливозаборник уйдут в фильтры и топливную аппаратуру.

Устройство и принцип работы инжекторной системы впрыска

Второе название систем впрыска бензиновых моторов – инжекторная. Основная ее особенность заключается в точной дозировке топлива. Достигается это путем использования в конструкции форсунок. Устройство инжекторного впрыска двигателя включает в себя две составляющие – исполнительную и управляющую.

В задачу исполнительной части входит подача бензина и его распыление. Она включает в себя не так уж и много составных элементов:

  1. Бак.
  2. Насос (электрический).
  3. Фильтрующий элемент (тонкой очистки).
  4. Топливопроводы.
  5. Рампа.
  6. Форсунки.

Но это только основные компоненты. Исполнительная составляющая может в себя включать еще ряд дополнительных узлов и деталей – регулятор давления, систему слива излишков бензина, адсорбер.

В задачу указанных элементов входит подготовка топлива и обеспечение его поступления к форсункам, которыми и осуществляется их впрыскивание.

Принцип работы исполнительной составляющей прост. При повороте ключа зажигания (на некоторых моделях – при открытии водительской двери) включается электрический насос, который качает бензин и заполняет им остальные элементы. Топливо проходит очистку и по топливопроводам поступает в рампу, которая соединяет собой форсунки. За счет насоса топливо во всей системе находится под давлением. Но его значение ниже, чем на дизелях.

Открытие форсунок осуществляется за счет электрических импульсов, подаваемых с управляющей части. Эта составляющая системы впрыска топлива состоит из блока управления и целого комплекта следящих устройств – датчиков.

Эти датчики отслеживают показатели и параметры работы – скорость вращения коленчатого вала, количества подаваемого воздуха, температуры ОЖ, положения дросселя. Показания поступают на блок управления (ЭБУ). Он эту информацию сравнивает с данными, занесенными в память, на основе чего определяется длина электрических импульсов, подаваемых на форсунки.

Электроника, используемая в управляющей части системы впрыска топлива, нужна, чтобы высчитать время, на которое должна открыться форсунка при том или ином режиме работы силового агрегата.

Виды инжекторов

Но отметим, что это общая конструкция системы подачи бензинового мотора. Но инжекторов разработано несколько, и каждая из них обладает своими конструктивными и рабочими особенностями.

На автомобилях применяются системы впрыска двигателя:

  • центрального;
  • распределенного;
  • непосредственного.

Центральный впрыск считается первым инжектором. Его особенность заключается в использовании только одной форсунки, которая впрыскивала бензин во впускной коллектор одновременно для всех цилиндров. Изначально он был механическим и никакой электроники в конструкции не использовалось. Если рассмотреть устройство механического инжектора, то она схожа с карбюраторной системой, с единственной разницей, что вместо карбюратора использовалась форсунка с механическим приводом. Со временем центральную подачу сделали электронной.

Сейчас этот тип не используется из-за ряда недостатков, основной из которых — неравномерность распределения топлива по цилиндрам.

Распределенный впрыск на данный момент является самой распространенной системой. Конструкция этого типа инжектора расписана выше. Ее особенность заключается в том, что топливо для каждого цилиндра подает своя форсунка.

В конструкции этого вида форсунки устанавливаются во впускном коллекторе и располагаются рядом с ГБЦ. Распределение топлива по цилиндрам дает возможность обеспечить точную дозировку бензина.

Непосредственный впрыск сейчас является самым совершенным типом подачи бензина. В предыдущих двух типах бензин подавался в проходящий поток воздуха, и смесеобразование начинало осуществляться еще во впускном коллекторе. Этот же инжектора по конструкции копирует дизельную систему впрыска.

В инжекторе с непосредственной подачей распылители форсунок располагаются в камере сгорания. В результате компоненты топливовоздушной смеси здесь запускаются в цилиндры по отдельности, и уже в самой камере они смешиваются.

Особенность работы этого инжектора заключается в том, что для впрыскивания бензина требуется высокие показатели давления топлива. И его создание обеспечивает еще один узел, добавленный в устройство исполнительной части – насос высокого давления.

Common Rail

После значительного ужесточения экологических норм для дизельных силовых установок, система питания моторов, работающих на солярке, подверглась изменениям.

Схема подачи топлива, когда смесь воздуха и горючего поступает в рабочую камеру при атмосферном давлении, стала называться Common Rail. Как результат, за счет такого принципа можно снизить расход и увеличить мощность установки. Кроме того, схема получила широкое применение, благодаря снижению шума и увеличению крутящего момента мотора. На сегодня, каждый второй автомобиль оснащен данной системой.

Однако, как и у каждого механизма, есть и недостатки. Например, для этой системы требуется качественное топливо, небольшое загрязнение способно привести к полной остановке агрегата, поскольку работа форсунок будет заблокирована.

ТСД бензинового агрегата

Сегодня большая часть автомобилей оснащены инжекторными системами. Однако встречаются ещё и карбюраторные автомобили. Рассмотрим, как оснащены ТСД обеих систем подробнее.

ТСД на карбюраторе имеет свою уникальную принципиальную схему. Составляющими элементами в ней выступают топливный резервуар, насос, коммуникации, фильтры. Одной из особенностей карбюраторной системы можно назвать то, что здесь используется воздушный фильтр.

Топливный резервуар способен вмещать от 40 до 80 литров горючего (это в среднем). Устанавливается в большинстве случаев сзади автомобиля, наполняется жидкостью через горловину. Залитый в резервуар бензин обязан проходить фильтрацию. С этой целью устанавливается сетчатый фильтр, задерживающий крупные частички мусора. Кроме того, в баке предусмотрен ДУТ – датчик уровня бензина. Его данные отображаются на приборной панели автомобиля.

Топливный насос

Насос – важное звено, как в карбюраторных, так и в инжекторных ТСД. Только в первом случае он, как правило, устанавливается не внутри резервуара, а снаружи

Именно насос поддерживает нужное рабочее давление в системе, оснащается фильтрами и т.д. На инжекторных системах устанавливается электронный насос, на карбюраторных – механический.

На инжекторных ТСД принято ставить не один, а два фильтра. Один встраивается непосредственно внутрь топливного насоса. Это сетка, задерживающая крупные частички мусора. Другой фильтр называется тонким, его ставят на участке топливных коммуникаций, как правило, под порогом или под капотом.

Нынешние фильтры оснащены также специальным клапаном. Он регулирует давление в системе, путём слива остаточного бензина по обратному каналу назад в резервуар.

Топливные коммуникации состоят из шлангов и трубок. Они должны быть невосприимчивы к бензину, иначе он их просто проест. Топливо постоянно циркулирует по этим трубкам, создаётся постоянное давление.

Воздушный фильтр

Как и говорилось выше, одним из значимых звеньев карбюраторной ТСД является воздушный фильтр. Он предназначен для очистки воздуха, поступающего в карбюратор. Если в воздухе будет много пыли, то мелкие частички осядут на смазанных маслом деталях, и это приведёт к быстрому износу. Принято делить воздушные фильтры на сухие и масляные. Последние отличаются тем, что оснащаются помимо корпуса с фильтром масляной ванной и воздухозаборником. Сухой воздушный фильтр – просто картоновый корпус и воздухозаборник.

Карбюратор – сложное устройство, прибор. Здесь происходит приготовление горючей смеси ТВС. Оно передаётся дальше в цилиндры двигателя. Инжекторные ТСД карбюраторов не имеют, топливо распыляется форсунками в проходящий поток воздуха.

Таким образом, питание ТСД выглядит на карбюраторном двигателе так.

Схема питания карбюраторного ДВС

Бензин в конкретном случае, качаемый насосом, поступает в карбюратор через фильтры. Топливо подаётся из резервуара.

Инжекторная ТСД вместо карбюратора оснащена форсунками. Здесь много различных датчиков, а управление ими выполняет БУ. Однозначно в инжекторной системе питания изменён процесс получения ТВС. Изначально сам насос уже подаёт горючее под сильным давлением. Затем через рейку, на которой установлены форсунки, жидкость подаётся в определённый цилиндр двигателя.

Роль БУ определять, сколько жидкости надо подавать в тот или иной цилиндр. На показатели влияет много чего: объём воздуха, жар двигателя, амплитуда вращения КВШ вала и многое другое. Датчики выдают информацию обо всём этом блоку управления, который считывает информацию и делает соответствующие выводы. Таким образом, осуществляется автоматический контроль подачи горючего.

Принцип работы инжекторного двигателя

На сегодняшний день инжекторные системы по сравнению с карбюраторными имеют много преимуществ. Это и снижение токсичности выхлопа, и уменьшение расхода топлива, и повышение мощности двигателя, и многое другое.

Примечательно, что система питания двигателя по-разному реагирует на те или иные режимы езды.

  1. Богатая ТВС создаётся при заводе мотора «на холодную». И это понятно, ведь требуется такой состав, в котором бензина больше, чем воздуха. Однако в таком режиме движение запрещено, так как это вызывает увеличение расхода топлива и быстрый износ элементов двигателя. Поэтому, особенно на карбюраторных автомобилях рекомендуется сначала прогревать мотор несколько минут, а уже потом стартовать с места.
  2. В режиме ХХ ТВС уже обеднённая. Образуется при движении с горки на спуск или при работе мотора в сильно прогретом состоянии.
  3. Меняется состав смеси и при движении с частичными нагрузками, при ускорении.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector