Рекуперация или преобразование кинетической энергии торможения
Содержание:
- Видео
- Рекуперативное торможение что это и когда будет наших авто
- Рекуперация на электрокарах и гибридных модификациях
- Виды систем рекуперации
- Система рекуперации с накопительным конденсатором
- Что такое рекуперативная система торможения?
- Эффективность
- Использование системы рекуперации в механизме подвески
- Заключение и полезное видео
Видео
Асинхронная машина, в принципе, как и все электрические машины, является обратимой. Это значит, что она может работать как в режиме двигателя, выполняя какую-то полезную работу, так и в режиме генератора – вырабатывая электрическую энергию.
Если к валу асинхронного электродвигателя приложить момент нагрузки, то преодолевая этот момент, машина будет потреблять энергию из сети. При работе на холостом ходу будет потребляться только энергия, необходимая для покрытия механических потерь в самой машине. Если к валу асинхронной машины подсоединить еще один электродвигатель и с его помощью вращать асинхронную машину, то потери в роторе будут компенсированы за счет приводного двигателя, а в случае, если скорость вращения вала асинхронной машины превысить синхронную частоту вращения (скорость вращения магнитного поля статора), то начнется рекуперация энергии в сеть. Давайте более подробно рассмотрим процесс рекуперации энергии в сеть.
При работе машины в двигательном режиме вращающееся магнитное поле пересекает проводники роторной и статорной обмотки в одинаковом направлении, следствием чего становится совпадение ЭДС статора Е1 и ротора Е2 по фазе. При переходе асинхронника в режим рекуперативного торможения магнитное поле пересекает проводники статора в прежнем направлении, а вот роторные проводники при n>n – в противоположном. При этом ЭДС ротора изменит свой знак на обратный и будет равна:
Соответственно ток ротора:
Отсюда следует, что при переходе в режим рекуперации направление изменит только активная составляющая роторного тока, реактивная не поменяет свое направление. Активный ток поменяет направление из-за изменения направления момента асинхронной машины, по сравнению с двигательным режимом.
Векторная диаграмма асинхронного электродвигателя в генераторном режиме:
Векторная диаграмма показывает, что между U и I1 угол сдвига фазы φ1>(π/2), что будет соответствовать режиму, в котором первопричиной появления тока I1 будет не напряжение питающей сети, а ЭДС Е1. Таким образом, статорная обмотка работает в режиме генератора, отдавая энергию в сеть.
Такие же выражения возможно получить и с помощью эквивалентной схемы. Активная составляющая роторного тока будет равна:
Это значит, что при ω>ω, скольжение s изменит знак, соответственно поменяет знак I2a / , что значит переход машины в режим рекуперативного торможения. Это подтверждает и выражение электромагнитной мощности:
Данное выражение показывает, что при переходе в режим рекуперативного торможения мощность электромагнитная изменяет свой знак, что означает отдачу мощности вторичным контуром.
Обратившись к выражению мощности вторичного контура:
Из этого выражения мы можем увидеть, что знак реактивной мощности будет сохранятся независимо от режима работы.
Это значит что – асинхронный электродвигатель в рекуперативном режиме тоже потребляет реактивную мощность. И чтоб осуществить рекуперацию, необходим источник реактивной мощности, который необходим для создания вращающегося магнитного поля.
Рекуперативное торможение часто используют в подъемно-транспортных механизмах, при спуске тяжелых грузов. Груз, который опускается, развивает на валу машины отрицательный момент и скорость становится n>n. Таким образом, машина переходит в режим рекуперативного торможения и тем самым создает тормозной момент на валу. В точке пересечения характеристики со значением статического момента скорость двигателя устанавливается, и груз опускается с постоянной скоростью, как это показано ниже:
тормозной момент будет отсутствовать в том случае, если момент на валу машины будет больше, чем критический момент этой же машины.
Рекуперативное торможения при наличии на валу асинхронной машины реактивного статического момента возможно только при наличии преобразователя частоты или двигателя, с переключающимся числом пар полюсов. Рассмотрим для двигателя с переключающимся числом пар полюсов.
Если обмотки статорные двигателя, работающего на высокой скорости
То есть число пар полюсов меньше, переключить на большее число пар полюсов р1, то в таком случае скорость вращения вала асинхронной машины станет больше, чем синхронная скорость, соответствующая новому числу полюсов
Машина перейдет в режим генератора:
На рисунке, область рекуперативного торможения соответствует участку BCD на механической характеристике.
Довольно часто такой способ применяют в металлорежущих станках, в которых применяю асинхронные машины с переключающимся количеством пар полюсов.
Рекуперативное торможение что это и когда будет наших авто
Рекуперативное торможение — что это такое и как работает?
Друзья, вы наверняка замечали, что в последние годы тема всевозможных возобновляемых и экологически чистых источников энергии муссируется очень активно.
В связи с этим хотелось бы поговорить о системе, которая просто таки творит чудеса — система рекуперативного торможения.
Во первых хочется сказать, эта новомодная система добралась все-таки и до любимых нами легковушек. Теперь уже практический каждый автопроизводитель имеет в своём арсенале по парочке моделей с гибридной силовой установкой, а то и вообще электромобиль.
Рекуперативное торможение — источник энергии
В чём же суть данной технологии? Оказывается, что во время движения наши с Вами автомобили не только поглощают энергию, съедая топливо, но и выделяют её.
Происходит это, как правило, во время торможения, когда масса кинетической энергии улетучивается в виде тепла от тормозных механизмов в атмосферу. «Зачем же нам греть воздух, если можно использовать её в других целях», — как-то раз задумались инженеры.
Результатом их трудов и стала система рекуперативного торможения, то есть такая, которая возвращает часть выделяющейся энергии обратно, в организм автомобиля, где потом используется вновь, а это значит, что мы экономим.
Проще всего такой фокус можно реализовать на гибридных машинах и электромобилях. Почему? Ответ будет дальше.
Кстати, автомобильный транспорт не единственный, где можно встретить рекуперационные системы. Довольно активно и давно они используется на железной дороге у электровозов, а также на городском электротранспорте – трамваях и метро.
Как сохранить энергию торможения?
С сутью рекуперации мы, кажется, разобрались, теперь остаётся выяснить, как она реализована на практике. Есть несколько способов повернуть энергию, выделяющуюся при торможении, в нужное русло. Мне известны только два:
- электрический;
- механический.
Электрический метод
Электрическое рекуперативное торможение, с технологической точки зрения можно назвать самым доступным, и именно он наиболее точно подходит под определение этой системе.
Система рекуперативного торможения
Электрический метод актуален для автомобилей с гибридными моторами (ДВС + электропривод) или для электромобилей.
Главную роль тут играют электродвигатели, которые благодаря своим свойствам, могут не только крутить колёса, но и крутиться сами под воздействием внешних сил, превращаясь в генераторы.
В момент рекуперативного торможения, электромотор переключается в генераторный режим и создаёт дополнительное останавливающее усилие на осях. В этом случае он уже не потребляет энергию аккумулятора, а наоборот, подзаряжает его, и так повторяется каждый раз, когда вы нажимаете на тормоз.
Таким образом, по подсчётам автопроизводителей, подобная система рекуперации на гибридном авто экономит до 30% запасов топлива.
Необходимо отметить, что в зависимости от скорости машины, электроника сама выбирает как ей лучше оттормаживаться – с помощью электродвигателя или традиционными методами.
Механический способ
Механическое рекуперативное торможение. По сути, это не система рекуперативного торможения, а система рекуперации кинетической энергии, так как она не способствует тому, чтобы автомобиль остановился, а просто накапливает часть энергии, выделяющейся во время снижения скорости.
В данном методе в качестве ключевого элемента используется маховик, который раскручивается во время торможения и затем отдаёт эту кинетическую энергию по мере дальнейшего движения авто.
Вращается маховик в вакуумной камере, а при торможении автомобиля раскручивается до 60000 об/мин. Конструкция такова, что она сохраняет энергию во вращательном маховике до 600 кДж, а при отдаче выдает мощность до 60 кВт, что составляет 80 л.с.
Такая система, получившая название KERS, несколько лет назад эксплуатировалась на гоночных машинах Формулы-1, где позволяла кратковременно добавить двигателю внутреннего сгорания ещё несколько десятков лошадиных сил.
В гражданской технике рекуперативное торможение пока является экзотикой и серийно не устанавливается.
Система KERS — рекуперация кинетической энергии (Kinetic Energy Recovery Systems)
Таким образом, наши дорогие читатели, мы видим, что игры с кинетической энергией, выделяющейся при торможении, могут давать вполне ощутимые результаты в виде экономии топливных ресурсов.
Но, справедливости ради, нужно заметить, что все эти системы довольно дорогое удовольствие, которое пока что очень осторожно становится массовым продуктом
На этом всё, спасибо за внимание и до новых встреч!
Рекуперация на электрокарах и гибридных модификациях
Для лучшего понимания сути дела, нам придётся немного углубиться в теорию. Любой электрический силовой агрегат постоянного тока, при подаче на него электроэнергии начинает функционировать как собственно двигатель. Однако, если начать механически вращать его вал, то на клеммах будет вырабатываться ток. Из этого проистекает логический вывод: электромотор способен работать как в роли двигателя, потребителя энергии, так и в роли генератора. Этим и воспользовались инженеры, которые массово начали внедрять в электрический и гибридный транспорт системы рекуперации.
Работают такие схемы по достаточно простому принципу:
- При воздействии на акселератор машина набирает ход, а электромотор при этом получает энергию от накопителя и передаёт тягу на колёса машины посредством трансмиссии.
- А вот когда транспортное средство начинает замедляться, электроника переводит силовой агрегат в режим генератора.
- Естественно, чтобы раскрутить электродвигатель, нужно прилагать определённое усилие и именно за счёт этого противодействия автомобиль станет замедляться. Конечно, без помощи обычных тормозов не обходится.
- В этот самый момент, вырабатываемая мотором, как генератором, электроэнергия, посредством специального контроллера будет подзаряжать накопитель. Таким образом, некоторую долю энергии удаётся вернуть для её последующего применения.
Нюанс
Конечно, при экстренном торможении система регенерации энергии не в состоянии мгновенно остановить транспортное средство. Поэтому здесь никак не обойтись без традиционных тормозов. Вычислительная аппаратура принимает соответствующее решение в зависимости от того, с каким усилием водитель воздействует на орган управления тормозной системой, и задействует помимо рекуперации тормоза.
Преимущества электрической рекуперации
Разработка внедрённая в полностью электрический автомобиль, позволяет увеличить дальность хода на одном заряде, а вот гибридным модификациям регенерация сулит довольно приятное сокращение расхода топлива. Да и тормозные механизмы проходят дольше, ведь часть нагрузки с них будет сниматься.
Недостатки электрической рекуперации
Самый главный недостаток системы регенерации — это её высокая себестоимость! Приобретая электромашину оснащённую такой чудодейственной системой, рассчитывайте на прибавку к ценнику в 30-50%, по сравнению с традиционными автомобилями в распоряжении которых старый добрый ДВС. Так что, если вы ездите в основном по идеальным прямым трассам, на которых торможение является скорее исключением чем правилом, вы вряд ли окупите своё высокотехнологичное и дорогостоящее приобретение в ближайшее время.
Плюс к этому, такое оснащение усложняет конструкцию транспортного средства, поэтому в случае поломки, могут возникнуть определённые сложности с ремонтом. Проблема в том, что за подобные ремонтные манёвры возьмутся не в каждом сервисе, да и мастер который будет осуществлять обслуживание, должен иметь высокую квалификацию. Поэтому перед приобретением такой совершенной конструкции, первым делом нужно решить вопрос по её дальнейшему обслуживанию и ремонту, найдя поблизости достойную мастерскую с высококвалифицированным персоналом.
Виды систем рекуперации
Основных разновидностей рекуперации всего три:
- Электрическая.
- Механическая.
- Гидравлическая.
Что и говорить, такая выгодная система получила весьма широкое распространение. Так, электрическая рекуперация сегодня довольно обширно применяется на легковушках: главным образом на электрических авто и авто оборудованных гибридными установками. Механические же вариации, нашли своё место исключительно на спортивных болидах. А вот «гидравлику» инженеры приспособили на крупнотоннажных коммерческих грузовиках и автобусах эксплуатируемых в городе.
Впрочем, дело не ограничивается только автомобилями, изобретение можно обнаружить и на лёгком индивидуальном электротранспорте. Это всем нам знакомые скутера, велосипеды, самокаты и даже скейтборды оборудованные электротягой. Далее в теме, мы будем более подробно разбирать именно электрическую регенерацию.
Система рекуперации с накопительным конденсатором
Период торможения автомобиля длится достаточно короткое время. Поэтому из-за технологических особенностей устройства современных аккумуляторных батарей (а вернее химических процессов, происходящих при их подзарядке) сохранить большое количество энергии в них довольно трудно. Компания Mazda разработала систему рекуперации с использованием накопительного конденсатора. В процессе торможения специальный генератор с напряжением 12÷25 В за короткий отрезок времени заряжает емкость. Далее накопленная энергия через конвертор (DC/DC) преобразуется в привычные 12 В и поступает либо на различные потребители (кондиционер, CD-плейер и так далее), либо подзаряжает штатную аккумуляторную батарею. По утверждению производителя экономия топлива составляет не менее 10%.
Что такое рекуперативная система торможения?
111 Мир в последние годы просто «заболел» возобновляемыми источниками энергии и вопросами экологии. Мы научились приводить в движение машину не только бензином, но и шоколадом и даже детскими подгузниками. Но ведь правда, почему мы должны производить отходы и загрязнять ими планету, если из мусорного пластика можно произвести пластиковые пакеты, а из отходной древесины — бумагу на кассовые чеки? Вот и автомобилестроители задумались: почему мы должны просто «убивать» энергию (кинетическую) качения автомобиля, когда мы можем её преобразовывать и аккуратно и бережливо складывать в аккумулятор?! Так и появилась рекуперативная система торможения автомобиля.
Рекуперативная тормозная система используется в автомобилях, чтобы окупить часть энергии, которая теряется, когда автомобиль тормозит. Эта технология используется, в основном на гибридных и электрических транспортных средствах, использующих как бензин или дизельное топливо, так и электричество в качестве источников энергии. Энергия, которая производится при торможении, сохраняется в аккумуляторной батарее и используется позднее для питания двигателя, экономя значительное количество исходной зарядки аккумулятора.
Как работает обычная тормозная система?
На обычных транспортных средствах в целях торможения используется сила трения для противодействия импульса движущегося автомобиля. Тормозные колодки трутся о диск или барабан, который подключен к оси, в результате чего кинетическая энергия (энергия движения) преобразуется в тепловую. Затем эта полученная тепловая энергия рассеивается в воздухе, теряя примерно 30 процентов генерируемой мощности автомобиля. Далее для того, чтобы снова набрать эту кинетическую энергию, двигатель вынужден сжигать топливо в целях восстановления прежней скорости (например, после проезда светофора).
Как работает система рекуперативного торможения?
Гибридные и электрические автомобили используют совершенно другой способ торможения, но обычно только на низких скоростях. Гибридные автомобили по-прежнему используют обычные тормозные колодки на высоких скоростях, но электродвигатель помогает такому автомобилю тормозить на низких скоростях. Во время того как водитель нажимает педаль тормоза, электродвигатель крутится в обратном направлении. Крутящий момент, созданный таким противодействием электродвигателя, противодействует импульсу движения автомобиля вперёд и в конечном итоге останавливает машину.
Так выглядит система рекуперативного торможения
Как генерируется электричество в рекуперативной системе?
Регенеративная тормозная система, однако, делает намного больше, чем просто останавливает машину. Дело в том, что электродвигатели и электрогенераторы — это по существу две стороны одной и той же технологии. Оба этих устройства используют магнитные поля и спиральные провода, но в разных конфигурациях. Системы рекуперативного торможения как раз и пользуются этой двойственностью. Всякий раз, когда электродвигатель автомобиля начинает крутиться в обратном направлении, он превращается в электрический генератор. В результате обратного вращения в аккумулятор, из которого изначально питался двигатель, теперь подаётся ток обратно — то есть электродвигатель теперь питает батарею, а не наоборот. А уже аккумулятор знает своё дело — он конвертирует электрическую энергию в химические вещества, чтобы использовать её позже.
Таким образом, мы видим, что такая технология рекуперативного торможения бережно сохраняет энергию, которая, как правило, терялась бы впустую во время обычного бесполезного торможения, и превращает её в полезную энергию. Но, тем не менее, рекуперативная система, конечно же, никогда не сможет стать вечным двигателем. Довольно много энергии всё ещё теряется в результате трения с поверхностью дороги, сопротивления воздуха, трения деталей автомобиля и множества других факторов. Но даже эти существенные факторы не главные в потере КПД рекуперации — главный источник потерь — это необходимость применения обычного торможения на высоких скоростях, так как рекуперативная система торможения без участия обычных колодок пока ещё не способна остановить машину с той же эффективностью.
Эффективность
Здесь все куда интереснее. Эффективность рекуперативного торможения — это показатель того, насколько система способна увеличить запас хода транспортного средства.
Как вы, наверное, уже догадались, показатель значительно варьируется в зависимости от факторов, включая условия движения, местность и размер транспортного средства.
Немалое влияние оказывают условия вождения. Вы увидите значительно лучшую отдачу в городе, где приходится многократно сбрасывать скорость на светофорах или в пробках, чем на шоссе. Ландшафт также играет весомую роль. Подъем в гору не дает вам много шансов на остановку, а вот при спуске для безопасности часто нужно притормаживать, что позволит преобразовать больший объем кинетических запасов. На длинных склонах рекуперативная система может применяться почти без остановок, чтобы регулировать скорость, тем самым заряжая аккумулятор в течении продолжительного промежутка.
Размер транспортного средства может быть самым значительным фактором для данного показателя по той простой причине, что более тяжелые тела содержат в себе гораздо больший импульс и кинетическую энергию. Подобно тому, как большой маховик является более эффективным, четырехколесный автомобиль имеет куда больше кинетической энергии при движении, чем мотоцикл или самокат.
Эффективность системы регенерации в автомобилях
Данные для сравнения могут быть несколько сложными. Машины Tesla выдают мощность рекуперативного торможения в 60 кВт при жесткой остановке, но это не отвечает на более интересный вопрос. Мы хотим знать, сколько энергии мы регенерируем во время поездки, а не насколько сильны наши тормоза каждый раз, когда мы месим педаль.
Для небольших электрических транспортных средств цифры не столь оптимистичны. На многих велосипедах с функцией рекуперативного торможения средним показателем является 4-5% регенерации, максимум 8% в холмистых районах. Другие персональные электромобили, включая самокаты и скейтборды, имеют схожие результаты.
Как мы писали выше, столь небольшие цифры во многом связаны с меньшим весом данных средств. У них просто нет большого импульса и, следовательно, они имеют меньшую кинетическую энергию для преобразования обратно аккумулятор.
А это вообще важно, насколько хорошо работают рекуперативные тормоза?
В индустрии электрических велосипедов регенеративное торможение иногда может использоваться скорее как маркетинговый инструмент, чем как целесообразное нововведение. Поскольку технология, как правило, возможна только в электрических байках с более крупными безредукторными двигателями, то производители таких велосипедов будут обязательно использовать столь эффективную разработку в своих моделях. В то же время компании, выпускающие байки со среднеразмерными приводами и другими редукторными моторами, которые не приспособлены к регенеративному торможению, относят технологию в разряд неэффективных и просто не ставят.
Истина заключается в том, что для небольших и персональных транспортных средств рекуперация не так эффективна, как в крупных электромобилях, однако эта функция все равно имеет множество преимуществ.
Рекуперация также позволяет внести механизм остановки в скейтборды — подвиг, который ранее выполнялся через трение подошвы вашей обуви о тротуар. Данная функция является очень полезной для безопасности в связи с появлением популярных моделей, достигающих скоростей более 30 км/ч.
Еще одним преимуществом регенеративного торможения является продление срока службы обычным тормозным деталям, таким как кабели и тормозные колодки. Постоянное обслуживание и замена данных частей раздражает, а если учесть, что электрические велосипеды и самокаты путешествуют намного дальше и быстрее, чем их не электрические братья, то детали изнашиваются намного раньше.
В конце концов, регенеративное торможение никогда не будет столь полезным в небольших средствах передвижения, как в крупных, просто из-за законов физики. Поэтому отсутствие технологии на электрических велосипедах и других малых EV для личного пользования не есть что-то ужасное. Однако преимущества использования этой разработки, без учета простого перехвата мощностей, нельзя игнорировать. И эй, вы будете получать бесплатный 5%-ный рост диапазона каждый день!
Использование системы рекуперации в механизме подвески
Естественно, любой разработчик всегда хочет извлечь максимальную выгоду из всего, поэтому рациональные инженеры пошли ещё дальше: они решили использовать кинетическую энергию подвески, работающей во время обычного движения. Разработкой такой системы занимаются фирмы Levant Power и ZF, так что в будущем, такими приспособлениями могут быть оснащены все серийно производимые автомобили.
Как работает рекуперативная подвеска
В состав системы входит небольшой электрический движок, четыре электрогидравлических насоса и блок управления. Аппаратура монтируется около каждого амортизатора, а при перемещении в них штока, кинетическая энергия будет преобразовываться в электрическую и подаваться на АКБ. Сочетание данной системы с традиционной рекуперацией, должно обеспечить эффективность приблизительно в 2 раза большую.
Заключение
Рекуперативное торможение — одно из самых полезных изобретений! Действительно, зачем пропадать энергии даром, если её можно использовать с пользой. Самую большую выгоду от рекуперации имеют электропоезда — вот там реально глобальные масштабы (с них кстати всё и началось), а самую маленькую — лёгкий индивидуальный электротранспорт: мотоциклы, скутера, велосипеды, самокаты и т. п. Также, большую роль играет местность, по которой будет двигаться транспортное средство. К примеру в городе, глупо ожидать от рекуперации больших успехов, ведь там, автомобили, итак, ползут черепашьим темпом и к интенсивному замедлению водители прибегают не часто. Зато вот на холмистой местности, действительно можно «разгуляться». В любом случае, некоторое количество затраченный энергии, вы таки будете получать обратно — иногда больше, иногда меньше. Поэтому, данная система имеет полное право на существование!
Заключение и полезное видео
Сравнение работы естественной вентиляции и принудительной системы с рекуперацией:
Принцип функционирования централизованного рекуператора, расчет КПД:
Устройство и порядок работы децентрализованного теплообменника на примере стенового клапана Prana:
Через вентсистему из помещения уходит порядка 25-35% тепла. Для сокращения потерь и эффективной теплоутилизации используются рекуператоры. Климатическое оборудование позволяет задействовать энергию отработанных масс для нагрева поступающего воздуха.
Есть, что дополнить, или возникли вопросы по работе разных вентиляционных рекуператоров? Оставляйте, пожалуйста, комментарии к публикации, делитесь опытом эксплуатации таких установок. Форма для связи находится в нижнем блоке.