Плавное включение ламп. устройство для плавного включения
Содержание:
- Плавное выключение света в салоне автомобиля
- Светодиодные ленты
- Особенности подключения светодиодов
- Подключение своими руками
- Управление по «минусу»
- Расчет подключения светодиодов в схемах на 12 и 220 вольт
- Радиоконструктор № 055, “Регулятор яркости светодиодов с плавным розжигом»
- Поделки своими руками для автолюбителей
- Подключение своими руками
- Особенности подключения RGB и COB светодиодов
- Схемы
- Разбираем светодиодную лампочку
- Плавный розжиг для светодиодов
Плавное выключение света в салоне автомобиля
Автолюбителю
Главная Радиолюбителю Автолюбителю
Во многих иностранных автомобилях есть функция плавного выключения света в салоне. Мне тоже захотелось иметь в своём автомобиле такое удобство. Для этого я собрал устройство на двух транзисторах, трёх резисторах, одном диоде и оксидном конденсаторе. Его схема приведена на рис. 1.
Рис. 1
В момент размыкания штатного дверного конечного выключателя SF1 автомобиля при закрывании дверей конденсатор С1 разряжен, поэтому по цепи +12 В, лампа салона EL1, C1, R1, эмиттерные переходы транзисторов VT1, VT2 и общий провод начинает протекать ток. Транзисторы VT1, VT2 открываются.
На лампе EL1 удерживается напряжение бортовой сети (+12 В) за вычетом указанного падения напряжения на транзисторах. Лампа ярко светит.
Конденсатор С1 начинает заряжаться, а ток через него уменьшаться. Это приводит к уменьшению базовых и коллекторных токов транзисторов VT1, VT2. Ток через лампу EL1 и напряжение на ней падают, и она плавно гаснет.
Время полного выключения зависит от мощности лампы EL1, ёмкости конденсатора С1, сопротивления резисторов и коэффициентов передачи токатранзисторов VT1, VT2. В авторском варианте оно примерно равно 5 с.
Для быстрой разрядки конденсатора при открывании любой двери установлен диод VD1.
В устройстве можно применить транзисторы средней (VT1) и большой (VT2) мощности любого типа.
При сборке конструкции я применил навесной монтаж элементов, разместив транзисторы на небольшом теплоотводе (рис. 2). Поскольку транзисторы находятся в активном режиме короткое время (5с), установка их на теплоотвод не обязательна.
Рис. 2
Правильно собранное устройство не требует налаживания. При необходимости изменить время выключения света в салоне следует подобрать ёмкость конденсатора С1. Чем она больше, тем больше задержка выключения света, и наоборот.
Установить собранное устройство можно в любом удобном месте, я разместил его в центральной стойке автомобиля, рядом с выключателем освещения.
Светодиодные ленты
Светодиодная лента представляет собой цепь соединённых светодиодов. Соединены они не просто так, например обычная 12V лента состоит из сегментов по 3 светодиода в каждом. Сегменты соединены между собой параллельно, то есть на каждый приходят общие 12 Вольт. Внутри сегмента светодиоды соединены последовательно, а ток на них ограничивается общим резистором (могут стоять два для более эффективного теплоотвода):
Таким образом достаточно просто подать 12V от источника напряжения на ленту и она будет светиться. За простоту и удобство приходится платить эффективностью. Простая математика: три белых светодиода, каждому нужно по ~3.2V, суммарно это 9.6V. Подключаем ленту к 12V и понимаем, что 2.5V у нас просто уходят в тепло на резисторах. И это в лучшем случае, если резистор подобран так, чтобы светодиод горел на полную яркость.
Подключаем к Arduino
Здесь всё очень просто: смотрите предыдущий урок по управлению нагрузкой постоянного тока. Управлять можно через реле, транзистор или твердотельное реле. Нас больше всего интересует плавное управление яркостью, поэтому продублирую схему с полевым транзистором:
Конечно же, можно воспользоваться китайским мосфет-модулем! Пин VCC кстати можно не подключать, он никуда не подведён на плате.
Управление
Подключенная через транзистор лента управляется точно так же, как светодиод в предыдущей главе, то есть все примеры кода с миганием, плавным миганием и управление потенциометром подходят к этой схеме.
Про RGB и адресные светодиодные ленты мы поговорим в отдельных уроках.
Питание и мощность
Светодиодная лента потребляет немаленький ток, поэтому нужно убедиться в том, что выбранный блок питания, модуль или аккумулятор справится с задачей. Но сначала обязательно прочитайте урок по закону Ома! Потребляемая мощность светодиодной ленты зависит от нескольких факторов:
- Яркость. Максимальная мощность будет потребляться на максимальной яркости.
- Напряжение питания (чаще всего 12V). Также бывают 5, 24 и 220V ленты.
- Качество, тип и цвет светодиодов: одинаковые на вид светодиоды могут потреблять разный ток и светить с разной яркостью.
- Длина ленты. Чем длиннее лента, тем больший ток она будет потреблять.
- Плотность ленты, измеряется в количестве светодиодов на метр. Бывает от 30 до 120 штук, чем плотнее – тем больший ток будет потреблять при той же длине и ярче светить.
Лента всегда имеет характеристику мощности на погонный метр (Ватт/м), указывается именно максимальная мощность ленты при питании от номинального напряжения. Китайские ленты в основном имеют чуть меньшую фактическую мощность (в районе 80%, бывает лучше, бывает хуже). Блок питания нужно подбирать так, чтобы его мощность была больше мощности ленты, т.е. с запасом как минимум на 20%.
- Пример 1: нужно подключить 4 метра ленты с мощностью 14 Ватт на метр, лента может работать на максимальной яркости. 14*4 == 56W, с запасом 20% это будет 56*1.2 ~ 70W, ближайший блок питания в продаже будет скорее всего на 100W.
- Пример 2: берём ту же ленту, но точно знаем, что яркость во время работы не будет больше половины. Тогда можно взять блок на 70 / 2 == 35W.
Важные моменты по току и подключению:
- Подключение: допустим, у нас подключено ленты на 100W. При 12 Вольтах это будет 8 Ампер – весьма немаленький ток! Ленту нужно располагать как можно ближе к блоку питания и подключать толстыми (2.5 кв. мм и толще) проводами. Также при создании освещения есть смысл перейти на 24V ленты, потому что ток в цепи будет меньше и можно взять более тонкие провода: если бы лента из прошлого примера была 24-Вольтовой, ток был бы около 4 Ампер, что уже не так “горячо”.
- Дублирование питания: лента сама по себе является гибкой печатной платой, то есть ток идёт по тонкому слою меди. При подключении большой длины ленты ток будет теряться на сопротивлении самой ленты, и чем дальше от точки подключения – тем слабее она будет светить. Если требуется максимальная яркость на большой длине, нужно дублировать питание от блока питания дополнительными проводами, или ставить дополнительные блоки питания вдоль ленты. Дублировать питание рекомендуется каждые 2 метра, потому что на такой длине просадка яркости становится заметной уже почти на всех лентах.
- Охлаждение: светодиоды имеют не 100% КПД, плюс ток в них ограничивается резистором, и как результат – лента неслабо греется. Рекомендуется приклеивать яркую и мощную ленту на теплоотвод (алюминиевый профиль). Так она не будет отклеиваться и вообще проживёт гораздо дольше.
Особенности подключения светодиодов
В большинстве случаев для подключаемых светодиодов требуется ограничение тока с помощью резисторов. Но, иногда вполне возможно обойтись и без них. Например, фонарики, брелоки и другие сувениры со светодиодными лампочками питаются от батареек, подключенных напрямую. В этих случаях ограничение тока происходит за счет внутреннего сопротивления батареи. Ее мощность настолько мала, что ее попросту не хватит, чтобы сжечь осветительные элементы.
Однако при некорректном подключении эти источники света очень быстро перегорают. Наблюдается стремительное падение яркости свечения, когда на них начинает действовать нормальный ток. Светодиод продолжает светиться, но в полном объеме выполнять свои функции он уже не может. Такие ситуации возникают, когда отсутствует ограничивающий резистор. При подаче питания светильник выходит из строя буквально за несколько минут.
Одним из вариантов некорректного подключения в сеть на 12 вольт является увеличение количества светодиодов в схемах более мощных и сложных устройств. В этом случае они соединяются последовательно, в расчете на сопротивление батарейки. Однако при перегорании одной или нескольких лампочек, все устройство выходит из строя.
Существует несколько способов, как подключить светодиоды на 12 вольт схема которых позволяет избежать поломок. Можно подключить один резистор, хотя это и не гарантирует стабильную работу устройства. Это связано с существенными различиями полупроводниковых приборов, несмотря на то, что они могут быть из одной партии. Они обладают собственными техническими характеристиками, отличаются по току и напряжению. При превышении током номинального значения один из светодиодов может перегореть, после этого остальные лампочки также очень быстро выйдут из строя.
Подключение своими руками
В первую очередь, нужно сказать, что разобрав диммер, каждый сможет понять, что его подключение не сложнее, чем обычного выключателя.
Давайте составим пошаговую инструкцию, пользуясь которой, каждый сможет получить желаемый результат:
Первый и самый важный шаг – обесточить розетку
Это мера безопасности, ведь работать необходимо с оголенными проводами, а получить удар 220в – не самое приятное.
Ослабляем винты на клеммах.
Далее подключаем 2 провода выключателя, к проводам от старого выключателя (важно не забывать и соблюдать полярность, иначе, в лучшем случае, все придется переделывать). Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене
Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене.
Привинчиваем винты монтажных лапок.
Крепим верхнюю рамку (коробку).
Управление по «минусу»
Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.
Недавно решил собрать схему, которая позволила бы мне любую светодиодную ленту (будь то в автомобиле или дома) плавно разжигать.
Изобретать велосипед я не стал, и решил немного поить При поиске почти на каждом сайте находил схемы, где светодиодная нагрузка сильно ограничивается возможностями схемы. Мне же хотелось, чтобы схема всего лишь плавно поднимала напряжение на выходе, чтобы диоды плавно разгорались и схема было обязательно пассивной (не требовала дополнительного питания и в режиме ожидания не потребляла бы ток) и обязательно была бы защищена стабилизатором напряжения для увеличения срока жизни моей подсветки.
А так как плат пока я травить не научился, то решил что сначала нужно освоить самые простые схемы и при монтаже использовать готовые монтажные платы, которые как и остальные компоненты схемы, можно приобрести в любом магазине радиодеталей.
Для того что собрать схему плавного розжига светодиодов со стабилизацией мне нужно было приобрести следующие компоненты:
Вообще, готовая монтажная плат достаточно удобная альтернатива так называемому методу «ЛУТ» где с помощью программы Sprint-Layout, принтера и того же текстолита можно собрать почти любую схему. Так вот, новичкам следует всё таки сначала освоить более простой вариант, который значительно проще и что самое главное «прощает ошибки» и так же не требует наличия паяльной станции.
Немного упростив исходную схему решил её перерисовать:
В некоторых случаях от LED ламп или индикаторов требуется плавное включение и выключение. Естественно светодиод при обычной подаче питания включается мгновенно (в отличии от ламп накаливания), что требует применения в данном случае небольшой схемы управления. Она не сложная и в простейшем варианте представляет собой всего десяток радиодеталей, во главе с парочкой транзисторов.
Расчет подключения светодиодов в схемах на 12 и 220 вольт
Отдельный светодиод невозможно напрямую подключить к источнику питания на 12 В поскольку он сразу же сгорит. Необходимо использование ограничительного резистора, параметры которого рассчитываются по формуле: R= (Uпит-Uпад)/0,75I, в которой R является сопротивлением резистора, Uпит и Uпад – питающее и падающее напряжения, I – ток, проходящий по цепи, 0,75 – коэффициент надежности светодиода, являющийся постоянной величиной.
В качестве примера можно взять схему, используемую при подключение светодиодов на 12 вольт в авто к аккумулятору. Исходные данные будут выглядеть следующим образом:
- Uпит = 12В – напряжение в автомобильном аккумуляторе;
- Uпад = 2,2В – питающее напряжение светодиода;
- I = 10 мА или 0,01А – ток отдельного светодиода.
В соответствии с формулой, приведенной выше, значение сопротивления будет следующим: R = (12 – 2,2)/0,75 х 0,01 = 1306 Ом или 1,306 кОм. Таким образом, ближе всего будет стандартная величина резистора в 1,3 кОм. Кроме того, потребуется расчет минимальной мощности резистора. Данные расчеты используются и при решении вопроса, как подключить мощный светодиод к 12 вольтам. Предварительно определяется величина фактического тока, которая может не совпадать со значением, указанным выше. Для этого используется еще одна формула: I = U / (Rрез.+ Rсвет), в которой Rсвет является сопротивлением светодиода и определяется как Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в цепи составит: I = 12 / (1300 + 220) = 0,007 А.
В результате, фактическое падение напряжения светодиода будет равно: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54 В. Окончательно значение мощности будет выглядеть так: P = (Uпит. — Uпад.)² / R = (12 -1,54)²/ 1300 = 0,0841 Вт). Для практического подключения значение мощности рекомендуется немного увеличить, например, до 0,125 Вт. Благодаря этим расчетам, удается легко подключить светодиод к аккумулятору 12 вольт. Таким образом, для правильного подключения одного светодиода к автомобильному аккумулятору на 12В, в цепи дополнительно понадобится резистор на 1,3 кОм, мощность которого составляет 0,125Вт, соединяющийся с любым контактом светодиода.
Расчет подключения светодиода к сети 220В осуществляется по такой же схеме, что и для 12В. В качестве примера берется такой же светодиод с током 10 мА и напряжением 2,2В. Поскольку в сети используется переменный ток напряжением 220В, расчет резистора будет выглядеть следующим образом: R = (Uпит.-Uпад.) / (I х 0,75). Вставив в формулу все необходимые данные, получаем реальное значение сопротивления: R = (220 — 2.2) / (0,01 х 0,75) = 29040 Ом или 29,040 кОм. Ближайший стандартный номинал резистора – 30 кОм.
Далее выполняется расчет мощности. Вначале определяется значение фактического тока потребления: I = U / (Rрез.+ Rсвет). Сопротивление светодиода рассчитывается по формуле: Rсвет = Uпад.ном. / Iном. = 2.2 / 0,01 = 220 Ом. Следовательно, ток в электрической цепи будет составлять: I = 220 / (30000 + 220) = 0,007А. В результате, реальное падение напряжение на светодиоде будет следующим: Uпад.свет = Rсвет х I = 220 х 0,007 = 1,54В.
Для определения мощности резистора используется формула: P = (Uпит. — Uпад.)² / R = (220 -1,54)² / 30000 = 1,59Вт. Значение мощности следует увеличить до стандартного, составляющего 2Вт. Таким образом, чтобы подключить один светодиод к сети с напряжением 220В понадобится резистор на 30 кОм с мощностью 2Вт.
Однако в сети протекает переменный ток и горение лампочки будет происходить лишь в одной полуфазе. Светильник будет выдавать быстрый мигающий свет, с частотой 25 вспышек в секунду. Для человеческого глаза это совершенно незаметно и воспринимается как постоянное свечение. В такой ситуации возможны обратные пробои, которые могут привести к преждевременному выходу из строя источника света. Чтобы избежать этого, выполняется установка обратно направленного диода, обеспечивающего баланс во всей сети.
Радиоконструктор № 055, “Регулятор яркости светодиодов с плавным розжигом»
Радиоконструктор для управление яркостью светодиодов № 055, для корректной регулировки яркости светодиодов, особенно сверхярких, в полном диапазоне от нуля до максимума наибольшее применение находит ШИМ регулирование. При этом виде регулировки питание светодиодов осуществляется не постоянным током, а импульсами с регулируемой длительностью (шириной). Чем длительней импульсы, тем ярче горит светодиод. Многие автолюбители заменяют лампы накаливания в своём автомобиле на светодиодные лампы, часто они светят ярче и становится вопрос регулирования яркости их свечения, особенно в приборном щитке. Ниже приводится схема:
Устройства, позволяющего регулировать яркость светодиодных устройств (лампы, ленты, светодиоды), рассчитанных на питание от напряжения 12 – 14 вольт с плавным розжигом и плавным угасанием яркости. Один белый или синий светодиод любой яркости питается от напряжения 3,2-3,4 вольта. Для корректной работы одиночные светодиоды (одного вида) должны быть соединены последовательно в цепь от одного до трёх светодиодов с ограничителем тока до допустимого при питании от источника с напряжением 12 – 14 вольт. Максимальный ток управления 20 ампер (с радиаторами для двух полевых транзисторов). При работе с меньшим током необходимо проверить степень нагрева корпуса транзисторов на максимальной яркости. Если транзисторы будут сильно нагреваться (свыше 50 градусов), необходимо установить радиатор (корпуса транзисторов имеют общий потенциал). Радиатор не должен касаться корпуса и элементов (или установить через изолирующие прокладки). Устройство функционально состоит из двух схем – ШИМ регулятора яркости на микросхеме КР1006ВИ1, управляющей ключевым полевым N-канальным транзистором VT1 и устройства, обеспечивающего плавное включение и выключение светодиодов, на биполярном n-p-n транзисторе VT3 и полевом Р-канальном транзисторе VT2. При необходимости исключить плавное включение и отключение, все элементы правее (по схеме) транзистора VT2 исключаются из схемы, а между выводами S и D VТ2 устанавливается перемычка. При подаче напряжения на схему ничего видимого не происходит. Запускается схема таймера DA1, светодиоды не светятся, т.к. транзистор VT2 находится в закрытом состоянии. Ток потребления минимальный – около 6 мА. При подаче на клемму Х5 управляющего напряжения +12 вольт (при включении зажигания, габаритных огней или от плюса питания схемы через выключатель) открывается транзистор VT3 и начинается зарядка конденсатора С4 через резистор R6. По мере зарядки конденсатора начинает плавно открываться транзистор VT2, плавно загораются светодиоды. После полного открытия транзистора VT2 управление яркостью светодиодов осуществляется резистором R1. Содержание набора 055 1. Микросхема КР1006ВИ1, 2. Транзистор IRF540, 3. Транзистор IRF9540, 4. Транзистор ВС547, 5. Печатная плата, 6. Диоды 1N4148 (3 шт.), 7. Конденсаторы: С1 – 0,22мкФ (224), С2 – 0,1мкФ (104), С3 – 470мкФ, С4 – 100мкФ, 8. Резисторы: R1 – 50k (переменный), R2, R3 – 1k (Кч/Ч/Кр) (2 шт.), R4, R8 – 4k7 (Ж/Ф/Кр) (2 шт.), R5 – 10k (Кч/Ч/Ор), R6 – 68k (Гол/Сер/Ор), R7 – 100k (Кч/Ч/Ж), 9. Ручка для переменного резистора, 10. Клеммный разъем х2, 11. Клеммный разъем х3, 12. Схема и описание.
Поделки своими руками для автолюбителей
Простой электро тюнинг автомобиля с помощью плавно вспыхивающих и гаснущих светодиодов. Отечественные автомобили выпускаются с расчётом на среднего потребителя. Многих автолюбителей это не устраивает, поэтому такое авто стремятся доработать. Прежде всего, это касается подсветки приборной доски и салона.
Устройство плавной регулировки светодиодной подсветки можно собрать самому. В интернете легко найти интересную схему.
Без всякого сомнения, самой простой и надёжной является схема на полевом транзисторе. Рассмотрим подробнее.
Подсветка приборки.
Когда говорят о доработке приборной панели, то имеют в виду тюнинг электрики, который позволяет с помощью светодиодов сделать её уникальной.
Немного о работе схемы…..:
После включения зажигания, схема запитывается напряжением +12 V и переводится в режим ожидания.
При включении габаритов управляющее напряжение +12 V через цепочку, состоящую из диода D2 и резистора R1, поступает на транзистор КТ 503. Транзистор открывается. Электролитический конденсатор С1 заряжается.
Плавно растущее напряжение, подаётся на полевой транзистор VT1. Он плавно открывается, и постепенно увеличивает выходное напряжение, поступающее на светодиоды. Происходит их плавное загорание.
При выключении габаритов, снимается управляющее напряжение, и закрывается транзистор КТ 503. Электролитический конденсатор С1 плавно разряжается через R3. Следовательно, уменьшается напряжение на транзисторе VT1, а значит и выходное напряжение.
По мере разрядки конденсатора гаснут светодиоды.
Когда конденсатор полностью разрядится, схема снова переходит в режим ожидания, при котором потребляемый ток почти отсутствует.
Нагрузкой транзистора VT1 может быть сборка на светодиодах LED или светодиодная лента. Транзистор IRF 9540 может работать с нагрузкой до 140 Вт.
В схеме допускается производить регулировки:
Подсветка салона
Плавная подсветка салона имеет свои достоинства:
Светодиодная подсветка включается после срабатывания на дверях концевых выключателей.
Схема имеет вид:
В отличие от предыдущей схемы, управляющим здесь является напряжение –12 V, поступающее с концевых выключателей.
По сравнению с предыдущей, в схеме убраны отдельные элементы: транзистор КТ 503, диод D2 и резистор R1, но принцип работы прежний.
Схемы в формате .lay —
Сборка схемы
Элементы схемы размещаются на печатной плате, которая изготавливается с определённой последовательностью:
1. Готовим текстолитовую пластинку. Её размер зависит от количества элементов и их расположения. Вырезанную пластинку необходимо обработать мелкой наждачной бумагой и обезжирить.
2. Используя программу Sprint Layout, рисуем будущую плату. Для распечатывания рисунка, используется лазерный принтер в режиме высокой чёткости и качества изображения.
В программе выбирается режим, при котором будет напечатан только слой с дорожками без обозначений. Рисунок распечатывается на глянцевую страницу журнала или на фотобумагу.
3. К нагретой пластинке текстолита прикладываем распечатку и прижимаем горячим утюгом. Держим утюг несколько минут.
4. После остывания опускаем пластинку в холодную воду, и удаляем бумагу с поверхности.
5. В приготовленное хлорное железо, опускаем пластинку, закреплённую на кусочек пенопласта. Во время вытравливания можно вынимать и контролировать плату.
6. Протравленную пластинку отмываем в воде, и очищаем дорожки растворителем или наждачной бумагой.
7. В готовой плате сверлим отверстия для монтажа элементов. Используются свёрла 0,6 мм.
8. Облуживаем плату. Самый доступный способ — это кисточкой смазать плату флюсом, и пролудить паяльником
Важно не перегревать дорожки, чтобы они не отслоились
9. Устанавливаем на плату элементы схемы и пропаиваем.
10. В конце работ необходимо очистить плату от остатков флюса. У чистой платы не будет замыканий между дорожками.
В итоге рассмотрения, надо отметить, что описанные схемы успешно используются не только для электро тюнинга автомобиля. Их часто используют с различными устройствами, где есть питание +12 V.
Автор; Арсений Санкт-Петербург, Россия
Популярное;
- Задержка включения ближнего света или ДХО на 8-10 секунд, схема
- Простое электронное реле поворотников для ламп или светодиодов, схема
- Простой регулятор напряжения на LM317, схема
- Плавное включение и затухание ДХО
- Преобразователь для зарядки конденсаторов
- Плавный розжиг фар или светодиодов на микроконтроллере
- Простой драйвер для светодиодов
- Схема защиты АКБ от глубокого разряда
Подключение своими руками
В первую очередь, нужно сказать, что разобрав диммер, каждый сможет понять, что его подключение не сложнее, чем обычного выключателя.
Давайте составим пошаговую инструкцию, пользуясь которой, каждый сможет получить желаемый результат:
Первый и самый важный шаг – обесточить розетку
Это мера безопасности, ведь работать необходимо с оголенными проводами, а получить удар 220в – не самое приятное.
Ослабляем винты на клеммах.
Далее подключаем 2 провода выключателя, к проводам от старого выключателя (важно не забывать и соблюдать полярность, иначе, в лучшем случае, все придется переделывать). Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене
Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене.
Привинчиваем винты монтажных лапок.
Крепим верхнюю рамку (коробку).
Особенности подключения RGB и COB светодиодов
Светодиоды с аббревиатурой RGB – это полихромные или многоцветные излучатели света разных цветов. Большинство из них собираются из трех светодиодных кристаллов, каждый из которых излучает свой цвет. Такая сборка называется цветовая триада.
Подключение RGB-светодиода производят так же, как и обычных светодиодов. В каждом корпусе такого многоцветного источника света располагаются по одному кристаллу: Red – красный, Green – зеленый и Blue – синий. Каждому светодиоду соответствует свое рабочее напряжение:
- синему – от 2,5 до 3,7 В;
- зеленому – от 2,2 до 3,5 В;
- красному – от 1,6 до 2,03 В.
Кристаллы могут быть соединены между собой по-разному:
- с общим катодом, т. е. три катода соединены между собой и с общим выводом на корпусе, а аноды – каждый имеет свой вывод;
- с общим анодом – соответственно для всех анодов вывод общий, а катоды – индивидуальные;
- независимая цоколевка – каждый анод и катод имеет собственный вывод.
Поэтому номиналы токоограничивающих резисторов будут разными.
Соединение кристаллов RGB-светодиода по схеме с общим катодом.
Соединение «с общим анодом».
В обоих случаях корпус диода имеет по 4 проволочных вывода, контактных площадок в SMD-светодиодах или штырька в корпусе «пиранья».
В случае с независимыми светодиодами выводов будет 6.
В корпусе SMD 5050 кристаллы-светодиоды располагают так:
В корпусе многоцветного 3 независимых кристалла зелёного, красного и синего цвета. Поэтому при расчёте номиналов резисторов помните – каждому цвету соответствует свое напряжение диода.
Подключение светодиодов типа COB
Аббревиатура COB – это первые буквы английского словосочетания chip-on-board. По-русски это будет – элемент или кристалл на плате.
Кристаллы клеят или паяют на теплопроводящую подложку из сапфира или кремния. После проверки правильности электрических соединений, кристаллы заливают желтым люминофором.
Светодиоды типа COB – это матричные конструкции, состоящие из десятков или сотен кристаллов, которые соединены группами с комбинированным включением полупроводниковых p-n-переходов. Группы – это последовательные цепочки светодиодов, количество которых соответствует напряжению питания светодиодной матрицы. Например, при 9 В это 3 кристалла, 12 В – 4.
Цепочки с последовательным включением соединяют параллельно. Таким образом набирают требуемую мощность матрицы. Кристаллы синего свечения заливают желтым люминофором. Он переизлучает синий свет в желтый, получая белый.
Качество света, т. е. цветопередачу регулируют в процессе производства составом люминофора. Одно- и двухкомпонентный люминофор дает невысокое качество, т. к. имеет в спектре 2-3 линии излучения. Трех- и пятикомпонентный – вполне приемлемую цветопередачу. Она может быть до 85-90 Ra и даже выше.
Подключение этого вида излучателей света не вызывает проблем. Их включают как обычный мощный светодиод, питаемый источником тока стандартного номинала. Например, 150, 300, 700 мА. Производитель СОВ-матриц рекомендует выбирать источники тока с запасом. Он поможет при запуске светильника с COB-матрицей в эксплуатацию.
Схемы
Так как устройство плавного включения ламп накаливания и галогенных ламп не представляет особой сложности с точки зрения схемотехники, его можно собрать своими руками. Процесс сборки может быть осуществлен:
- навесным монтажом;
- на макетной плате;
- на печатной плате.
И зависит от ваших навыков и возможностей самым надежным будет вариант на печатной плате, от навесного монтажа в этом случае лучше держаться подальше, если вы не владеете особенностями такого монтажа в цепях 220 В.
Плавное включение ламп 220 В: схема на тиристоре
Схема первая представлена на рисунке ниже. Основным ее функциональным элементом является тиристор, включенный в плечах диодного моста. Номиналы всех элементов подписаны. Если использовать ее в качестве плавного розжига для торшера, настольной лампы или другого переносного светильника – удобно заключить ее в корпус, подойдет распредкоробка для наружного монтажа. На выходе установить розетку для подключения светильника. По сути – это обычный диммер, и плавного пуска как такового здесь нет. Вы просто поворачиваете ручку потенциометра, плавно увеличивая напряжение на лампе. Кстати, такая приставка подойдет и для регулировки мощности паяльника или других электроприборов (плиты, коллекторного двигателя и т. д.).
Вариант реализации схемы
Плавное включение ламп 220 В: схема на симисторе
Можно уменьшить количество деталей и собрать такую же схему, которая установлена в фирменные блоки защиты. Она изображена на рисунке ниже.
Схема с симистором
Чем больше постоянная времени R2С1 цепочки, тем дольше происходит розжиг
Для увеличения времени нужно увеличить емкость C1, обратите внимание – это полярный или электролитический конденсатор. Конденсатор C2 должен выдерживать напряжение не менее 400 В – это неполярный конденсатор
Чтобы увеличить мощность подключенных ламп – измените симистор VS1 на любой подходящий по току к вашей нагрузке.
Дроссель L1 – это фильтрующий элемент, он нужен для уменьшения помех в сети от включения симистора. Его использовать необязательно, на работу схемы не влияет.
Когда включается SA1 (выключатель), ток начинает течь через лампу, дроссель и конденсатор С2. За счет реактивного сопротивления конденсатора, ток через лампу течет маленький. Когда напряжение до которого зарядится С1 достигнет порога открытия симистора – ток потечет через него, лампа включится в полный накал.
Плавное включение ламп 220 В: схема на ИМС КР1182ПМ1
Есть вариант и плавного включения с помощью микросхемы КР1182ПМ1, она обеспечивает плавный пуск ламп и другой нагрузки мощностью до 150 Вт. Подробное описание этой микросхемы вы найдете здесь:
а ниже изображена схема устройства, она предельно проста:
Простая схема
Или вот ее модернизированный вариант для включения мощной нагрузки:
Проработанная схема
Дополнительно установлен тиристор BTA 16–600, он рассчитан на ток до 16 А и напряжение до 600 В, это видно из маркировки, но можно взять и любой другой. Таким образом, вы можете включать нагрузку мощностью до 3,5 кВт.
Разбираем светодиодную лампочку
Корпус ламп делают из композитного материала, который служит теплоотводом для светодиодов. Разбираются лампочки разных производителей довольно просто. Рассеиватель держится по периметру на защелках и силиконе. Поддеваем ножом и подрезаем герметик по кругу, колпак рассеивателя снимается с некоторым усилием.
Разборка светодиодной лампы
Плата с диодами может быть запрессована или прикручена винтами, контакты могут быть припаяны или съемными. С прикрученной платой всё просто, а вот с запрессованной придётся повозится. Мне обычно удается подковырнуть плату плоской отвёрткой, но каждый раз, у разных производителей это не всегда удаётся совсем без повреждений корпуса, иногда откалывается кусок пластика, который затем можно приклеить обратно, если есть необходимость.
После снятия платы со светодиодами не нужно сразу пытаться извлечь драйвер, это не получится. Будут мешать провода, идущие от цоколя лампы.
Драйвер внутри светодиодной лампы
На заводе сборка происходила в другом порядке, чем мы пытаемся разобрать. Необходимо поддеть и вытащить центральный контакт цоколя лампы, так один вывод освободится, а второй можно отпаять или отрезать от самой платы, а потом при сборке его придётся удлинить.
Плавный розжиг для светодиодов
Недавно решил собрать схему, которая позволила бы мне любую светодиодную ленту (будь то в автомобиле или дома) плавно разжигать. Изобретать велосипед я не стал, и решил немного по
ить. При поиске почти на каждом сайте находил схемы, где светодиодная нагрузка сильно ограничивается возможностями схемы.
Мне же хотелось, чтобы схема всего лишь плавно поднимала напряжение на выходе, чтобы диоды плавно разгорались и схема было обязательно пассивной (не требовала дополнительного питания и в режиме ожидания не потребляла бы ток) и обязательно была бы защищена стабилизатором напряжения для увеличения срока жизни моей подсветки.
А так как плат пока я травить не научился, то решил что сначала нужно освоить самые простые схемы и при монтаже использовать готовые монтажные платы, которые как и остальные компоненты схемы, можно приобрести в любом магазине радиодеталей.
Для того что собрать схему плавного розжига светодиодов со стабилизацией мне нужно было приобрести следующие компоненты:
Вообще, готовая монтажная плат достаточно удобная альтернатива так называемому методу “ЛУТ” где с помощью программы Sprint-Layout, принтера и того же текстолита можно собрать почти любую схему. Так вот, новичкам следует всё таки сначала освоить более простой вариант, который значительно проще и что самое главное “прощает ошибки” и так же не требует наличия паяльной станции.
Немного упростив исходную схему решил её перерисовать:
Знаю что на схемах транзистор и стабилизатор обозначается не так, но мне так проще, а вам будет нагляднее. А если же вы, как и я, успели позаботиться о стабилизации, то вам нужна ещё более простая схема:
Тоже самое, только без использования стабилизатора КРЕН8Б.
- R3 — 10К Ом
- R2 — 51К Ом
- R1 — от 50К до 100К Ом (сопротивлением этого резистора можно управлять скоростью розжига светодиодов).
- С1 — от 200 до 400мк Ф (можно и выбрать другие ёмкости, но превышать 1000мк Ф не стоит).
На тот момент мне нужны были две платы плавного розжига: — для уже сделанной подсветки ног. — для плавного розжига приборной панели.
Так как о стабилизации светодиодов подсвечивающих мои ноги я уже давно позаботился, то в схеме розжига КРЕНка уже была не нужна.
Схема плавного розжига без стабилизатора.
Для такой схемы я использовал всего 1.5 кв см монтажной платы, которая стоит всего 60 рублей.
Схема плавного розжига со стабилизатором напряжения.
Размеры 25 х 10 мм.
Достоинствами данной схемы является то, что подключаемая нагрузка зависит только от возможностей блока питания (аккумулятора авто), и от полевого транзистора IRF9540N, который очень надежен (дает возможность подключить через себя 140Вт нагрузки при токе до 23А (информация из интернета). Схема сможет выдержит 10 метров светодиодной ленты, но тогда транзистор придется охлаждать, благо в таком исполнении можно закрепить на полевик радиатор (что конечно приведёт к увеличению площади схемы).
При первом тестировании схемы было снято коротенькое видео:
А так как схему розжига для подсветки ног необходимо было подключать в разрыв основной схемы питания, то не долго думая как же её заизолировать, просто запихнул её в кусок велосипедной камеры.
Просто под рукой ничего не оказалось.
Схему нужно подключать в разрыв основной цепи питания (никакого дополнительного управляющего провода и тем более постоянного плюса конечно же не требуется).
Подключив схему плавного розжига снял ещё одно видео:
На этом всё, благодарю всех тех кто всё таки смог дочитать сей пост до конца. Конечно же для кого то это будет жёстким баяном, но надеюсь найдутся товарищи которым будет интересно.
Автор; Вячеслав Татаренко