Расчет возможности пуска электродвигателя 380 в
Содержание:
- Почему зимой лучше АКБ с более высокими пусковыми токами?
- Определение понятия
- Как узнать пусковой ток?
- Определение возможности пуска электродвигателя
- Так что это – пусковой ток?
- Сравниваем характеристики пускового тока автомобильных аккумуляторов
- Как замеряют пусковой ток аккумулятора
- Тепловое действие пускового тока
- Базовые понятия
- Как подобрать автоматический выключатель для двигателя
- Алгоритм и основные ошибки.
- Пусковые токи электродвигателей
Почему зимой лучше АКБ с более высокими пусковыми токами?
Для того, чтобы правильно проводить эксплуатировать любой современный аккумулятор, нужно строго понимать, что такое явление пускового тока. Этот термин, если предельно упростить его значение, указывает, какой уровень тока необходим для батареи, чтобы суметь запустить двигатель с помощью стартера. Дизельные типы двигателей будут отличаться гораздо большей степенью сжатия топлива, и обороты пуска у них заметно выше, чем у двигателей на бензине. Поэтому для такого двигателя нужен намного более мощный аккумулятор с большей величиной пусковых токов. А вот ёмкость батареи того и другого типа может оказаться одинаковой.
Если зима оказывается морозной, то для дизельных двигателей аккумулятора ставятся с пусковым током от 320 ампер, а для бензиновых вполне подойдёт и намного меньший показатель. Если дизельный аккумулятор работает дольше трёх лет, то в случае быстрого падения температуры воздушной среды, у него обязательно будут возникать проблемы в работе. Выбрасывать его в таком случае не нужно, потому что его можно применить для машины, которая имеет бензиновый двигатель. Дело в том, что низкие температуры провоцируют осаждение сульфата свинца в электролите, что приводит к тому, что батарея теряет эффективную ёмкость. Для того, чтобы преодолеть такую ситуацию и рекомендуется зимой применять батареи с более высокими показателями пускового тока. Для них уменьшение объёма электролита не будет так критично в момент запуска мотора.
Если нет возможности приобрести батарею с большим показателем пускового вида тока, желательно следить, чтобы батарея просто качественно работала.
Ради этого следует следить за уровнем электролитической жидкости постоянно, а также присматривать, чтобы на клеммах отсутствовали даже мелкие следы окислов. Также на морозе естественно возникает эффект увеличения сопротивления передаче тока в электроцепи автомобиля. Клеммы можно специально покрывать специализированными защитными мазями, чтобы защитить от применяемой на дорогах зимой соли. Она добирается даже до клемм аккумулятора, как и до многих иных частей автомобильной конструкции, выводя их из строя.
В случае, если батарея аккумулятора хорошо справляется со своими обязанностями, в морозный сезон её всё-равно желательно инспектировать хотя бы пару раз в течение месяца, чтобы проверить, не возникло ли поточных проблем. Более высокий качественный пусковой ток обеспечивает возможность проводить такую проверку не более одной в месяц.
Определение понятия
Пусковой ток двигателя – электроток, потребляемый силовым агрегатом в момент старта
Его показатель в несколько раз превышает значение номинального тока и при выборе оборудования крайне важно учитывать этот параметр. Здесь уместно сравнение с автомобилем, при разгоне которого тратится значительно больше топлива в сравнении с движением при постоянной скорости
Это явление характерно для различного электрооборудования:
- Погружные насосы – отличаются самым тяжелым стартом, и их пусковой электроток может превышать номинальный в 9 раз.
- Холодильники – при запуске сила тока превышает номинальный в 3,33 раза.
- Микроволновые печи – показатель пускового электротока в 2 раза выше номинального значения.
Это связано с тем, что в момент включения электродвигателя в его обмотке создается сильное магнитное поле, необходимое для раскручивания ротора. Именно поэтому показатель электротока пуска значительно превышает номинальное значение. На его значение оказывают влияние различные факторы:
- Наличие нагрузки на валу силового агрегата.
- Скорость вращения.
- Схема подключения и т. д.
Как узнать пусковой ток?
Кратность пускового тока (отношение пускового тока к номинальному) найти в документации на двигатель бывает не так-то просто. Но его можно измерить (оценить, узнать) самому. Вот навскидку несколько способов:
- Первый способ (лучший) – использовать осциллограф. Взять шунт (например, резистор 0,1…0,5 Ом, чем меньше по сравнению с обмотками, тем лучше), и посмотреть на нём осциллограмму в момент пуска. Далее из максимального амплитудного значения определяем действующее напряжение (поделить на корень из 2), далее по закону Ома считаем пусковой ток. Можно ничего не умножать и не делить – просто измерить клещами ток в рабочем режиме, и умножить его на разницу токов на экране осциллографа. Способ хорош тем, что видно переходные процессы, вызванные ЭДС самоиндукции, мгновенные значения тока, длительность разгона. Кроме того, учитываются параметры питающей сети. Ещё плюс – пусковой ток измеряется реальный, на реальном двигателе и механизме.
- Второй способ измерения пускового тока – подать на двигатель пониженное (в 5-10 раз) напряжение рабочей частоты и измерить ток. Почему пониженное? Это необходимо для того, чтобы ротор можно было легко зафиксировать, не допуская перегрева. Измеренный ток пересчитать, получим пусковой. Достаточно измерить ток на одной фазе. По другим токи будут (обязаны быть) такими же. Этот способ используют при производстве и испытаниях двигателей. Именно этим способом производители получают табличные данные. Способ опирается на номинальный ток, в реальности (на реальном механизме) пусковой ток может быть другим!
- Измерить пусковой ток токоизмерительными клещами. Плюс этого способа – простота и оперативность. Клещи используют в большинстве случаев для проверки режимов работы двигателей. Минус – такие клещи достаточно инерционны, а нам нужно увидеть, что происходит за доли секунды. Но этот минус нивелируется, когда мы измеряем ток при пуске нагрузки с высоким моментом инерции (вентиляторы, насосы с массивными крыльчатками). Пуск длится более 10 сек, и на экране клещей всё видно.
- Трансформатор тока. Такой используется, например, в узлах учета электроэнергии – благодаря трансформатору тока нет необходимости измерять реальной ток, а можно измерить ток, уменьшенный в точно известное количество раз. Так же измеряют ток в электронных пусковых устройствах (преобразователях частоты, софтстартерах). Минус способа – трансформатор тока рассчитан на частоту 50/60 Гц, а переходные процессы во время пуска имеют широкий спектр и много гармоник. Поэтому можно сказать, что такой способ тоже обладает высокой инерционностью.
Конечно, реальность отличается от эксперимента. Прежде всего тем, что ток короткого замыкания реальной сети питания не бесконечен. То есть, провода, питающие двигатель, имеют сопротивление, на котором в момент пуска падает напряжение (иногда – до 50%). Из-за этого ограничения реальный пусковой ток будет меньше, а разгон – длительнее. Поэтому нужно понимать, что значение кратности пускового тока, указанное производителем, в реальности всегда будет меньше.
Для чего нужны двигатели – приводить в действие механизмы и получать прибыль!
Теперь разберём другой вопрос –
Определение возможности пуска электродвигателя
При проектировании иногда необходимо выполнять проверку на возможность запуска короткозамкнутого двигателя при заданных параметрах электрической сети. Лучше предусматривать устройство плавного пуска или частотный преобразователь, но электромагнитный пускатель дешевле.
Методика проверки сводится к оценке снижения напряжения от трансформатора до электродвигателя.
Проблема заключается в том, что при пуске у двигателя возникает пусковой ток, который в 4-8 раз больше номинального тока.
Обратите внимание
Пусковой ток создает дополнительную потерю напряжения в сети, а это может привести к тому, что двигатель будет не в состоянии провернуть вал с нагрузкой, поскольку развиваемый двигателем вращающий момент изменяется пропорционально квадрату напряжения. Кроме этого, в результате резкого падения напряжения могут остановиться другие электродвигатели, питающиеся от этой сети.
Нормальный пуск двигателя, возможен в том случае, если начальный момент электродвигателя будет больше на 10% пускового момента сопротивления приводимого механизма.
Чтобы выполнить проверку запуска двигателя, достаточным условием является сравнение пусковых (начальных) моментов электродвигателя и приводимого механизма.
Условие пуска двигателя
где Uд – напряжение на клеммах электродвигателя в начальный момент пуска в долях от номинального напряжения;
mп=Мпуск/Мном – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (по каталогу);
mмех=Ммех/Мном –требуемая кратность пускового момента приводимого механизма;
Кз – коэффициент загрузки электродвигателя;
1,1 – коэффициент запаса;
dUдоп% — дополнительные потери напряжения (%) в сети от питающего трансформатора и в трансформаторе до клемм электродвигателя механизма;
Кi – кратность пускового тока при номинальном напряжении на клеммах электродвигателя (по каталогу);
Iномд – номинальный ток электродвигателя (по каталогу), А;
Uном – номинальное напряжение трансформатора;
rтр, xтр – активное и индуктивное сопротивление трансформатора, отнесенное к обмотке низшего напряжения;
r, x – активное и индуктивное сопротивление кабельной линии;
cosfном – номинальное значение коэффициента мощности;
mп=Мпуск/Мном – кратность пускового (начального) момента электродвигателя (по каталогу);
sном – номинальное скольжение;
dUс% — суммарная потеря напряжения в линии от шин питающего трансформатора до двигателя механизма и в трансформаторе без учета пуска двигателя (%);
dUс=0,08Uном – при отсутствии данных мощности трансформаторов и их загрузке;
При определении mмех можно руководствоваться следующими данными:
Вентиляторы – 04-0,5.
Компрессоры центробежные и поршневые – 0,4.
Насосы центробежные и грузовые – 0,4.
Станки металлообрабатывающие – 0,3.
Лифты – 1,7-1,8.
Другие электродвигатели будут устойчиво работать, при снижении напряжения от пуска другого электродвигателя, если максимальные моменты останутся больше моментов приводимых механизмов.
Работа другого двигателя
mmax=Мmax/Мном – кратность максимального момента электродвигателя (по каталогу).
Подставляя значения в эти формулы, мы узнаем, выдержит ли питающая сеть с трансформатором пуск двигателя, а также можно проверить, не отключится ли в этот момент другой работающий двигатель.
На форуме я выкладывал программу по проверке возможности пуска двигателя, но там какие-то проблемы со шрифтами. Возможно у вас получится ее запустить, поскольку она сделана под DOS.
Так что это – пусковой ток?
Как я уже писал сверху пусковой ток – это максимальная сила тока которую может отдавать батарея в очень короткий промежуток времени. Простыми словами чтобы запустить двигатель среднестатистической машины нужно примерно 255 – 270 Ампер, очень много! По сути это и есть «пусковые значения», от слова «запустить» применительно к силовому агрегату.
Если емкость аккумулятора примерно 60 Aч, то это превышает его номинал примерно в 4 – 5 раз. Правда, такое напряжение должно отдаваться всего около 30 секунд, не больше.
Зачастую в южных районах нашей страны, где температура воздуха всегда остается в плюсовой зоне, этот параметр даже и не рассматривают! Ибо не зачем, берем средний аккумулятор, и он прекрасно будет справляться со своими обязанностями. Ведь на улице тепло и масло жидкое. Но вот в северных районах этот показатель является одним из самых важных, там температуры зачастую в крайне отрицательной зоне и запустить силовой агрегат сложно, масло похоже, скорее на кисель, чем на текучую жидкость. Запуск будет крайне осложнен.
Таким образом, чем ниже температура зимой, тем важнее этот параметр, это своего рода аксиома.
Сравниваем характеристики пускового тока автомобильных аккумуляторов
Знаете ли вы, отчего зависит запуск двигателя в лютый мороз? Вопреки распространенному мнению, уверенный старт обеспечивает не емкость АКБ, которая влияет лишь на количество попыток завода. А важнейшей характеристикой, отвечающей именно за мощность прокрутки, является пусковой ток.
Что это такое? В соответствии с официальным определением, под данным термином принято понимать максимальный ток, отдаваемый аккумуляторной батареей в течение нескольких секунд для запуска двигателя. Под заданным временем подразумевается интервал от 3 до 30 секунд, который варьируется в зависимости от методики испытаний батарей, принятой в том или ином регионе.
Отметим, что пусковой ток – это относительная величина. Это обусловлено тем, что в новом и старом аккумуляторе данный параметр будет сильно отличаться по причине снижения емкости. Поэтому, выбирая батарею для своего авто, покупайте аккумулятор со значительным запасом пускового тока – так, чтобы даже через 3-5 лет не испытывать проблем с пуском мотора даже в самую лютую зиму.
Каким образом подобрать оптимальный стартерный ток? Приведем пример: предположим, для прокрутки стартера автомобиля необходимо 250 ампер. Это значит, что покупать нужно такой аккумулятор, который на выходе даст не менее 350 ампер. В противном случае преждевременная замена АКБ будет практически неизбежной.
Обратите внимание на то, что пусковым током называется параметр, подразумевающий краткосрочную подачу тока на стартер, которая не должна превышать полуминуты. Если пытаться завести двигатель дольше 30 секунд, можно столкнуться с перегревом АКБ и выходом ее из строя
От теории к практике
Если вы посмотрите на крышку автомобильного аккумулятора, то увидите маркировку, в которой помимо прочих параметров, указывается и ток холодной прокрутки. Для примера возьмем батарею со следующей надписью «250 А (DIN)». Это значит, что данный аккумулятор дает 250 ампер тока при температуре окружающей среды 18 градусов Цельсия и кратковременной разрядке в соответствии со стандартами DIN, принятыми в Германии. Другими словами, на первой секунде напряжение составляет 12 вольт, через полминуты – 9 вольт, а по прошествии двух минут и тридцати секунд — 6 вольт. Измерения по данной технологии проводятся, исходя из требований Германского промышленного стандарта или так называемого DIN 43539. Также они соответствуют нормативам отечественного ГОСТ 959-91.
Отметим, что в Соединенных Штатах Америки стандарты DIN и ГОСТ не применяются. Здесь действуют нормы SAE, принятые Обществом Автомобильных Инженеров. Они максимально приближены к стандартам (ЕС ЕN 60095-1) и новым нормативам, действующим сегодня в России (ГОСТ 959-2002). Разумеется, из-за этого возникает определенная путаница. То есть, покупая аккумулятор, изготовленный в США, мы должны соотнести параметры с европейскими нормами. Именно для этого создана таблица, размещенная ниже. Она поможет найти характеристик по токам холодной прокрутки, исходя из различных методик испытания.
ЕN 60095-1 (ряд Европейских стран и новый российский ГОСТ 959-2002) | DIN 43539 (Германия) и
ГОСТ 959-91 (Россия) |
SAE (США) |
280 | 170 | 300 |
330 | 200 | 350 |
360 | 225 | 400 |
420 | 255 | 450 |
480 | 280 | 500 |
520 | 310 | 550 |
540 | 335 | 600 |
600 | 365 | 650 |
640 | 395 | 700 |
680 | 420 | 750 |
760 | 450 | 800 |
790 | 480 | 850 |
860 | 505 | 900 |
900 | 535 | 950 |
940 | 560 | 1000 |
1000 | 590 | 1050 |
1040 | 620 | 1100 |
1080 | 645 | 1150 |
1150 | 675 | 1200 |
1170 | 700 | 1250 |
Располагая предоставленной выше информацией, не составляет труда провести простой сравнительный анализ автомобильных аккумуляторов различных марок, исходя из пусковых параметров. Так, к примеру, если на аккумуляторе американского бренда обозначен ток 900 А (SAE), то этой батарее по своим характеристикам идентичны АКБ с токами 860 А (EN) или 505 А (DIN) – см. таблицу.
На аккумулятор надейся, а сам не плошай!
Не забывайте: чем сильнее ток холодной прокрутки, тем более уверенно батарея будет крутить маховик в холодное время хода. Но! Слишком большая сила тока негативно отражается на ресурсе щеточно-коллекторной части стартера. Если же при новом аккумуляторе запуск двигателя все равно затруднен, это может свидетельствовать о неисправностях системы зажигания, генератора, неправильном выборе моторного масла (по вязкости) и пр.
Как замеряют пусковой ток аккумулятора
Аккумуляторные батареи изготавливаются огромным количеством компаний, расположенных в самых разных уголках мира. И неудивительно, что такому большому числу производителей было достаточно сложно договориться между собой о едином стандарте замеров различных параметров АКБ. Это утверждение в полной мере относится и к определению пускового тока аккумулятора.
В целом процедура проверки силы пускового тока у всех производителей одинакова. Батарею охлаждают, как правило, до минус 18 градусов по Цельсию, имитируя экстремальные погодные условия, после чего подают на неё нагрузку, сравнимую с запуском двигателя. Это действие повторяют несколько раз через различные промежутки времени. Средняя величина полученных показаний и является заявленной силой стартового тока. Стоит уточнить, что такую тщательную проверку проходят лишь некоторые батареи из каждой партии, поэтому так называемый «процент брака» присутствует в аккумуляторах даже самых передовых производителей.
Если температура охлаждения у различных тестов практически одинакова, то вот сила и длительность нагрузки отличается весьма существенно:
Немецкий стандарт «DIN». Охлаждённый до -18 градусов аккумулятор разряжают до 9 Вольт в течение 30 секунд. Маркируются подобные батареи примерно так: DIN 555 19
Обратите внимание на то, что в подобной маркировке прямое значение силы пускового тока не содержится, поэтому о ней нужно будет узнать дополнительно у продавца или в техпаспорте АКБ.
Российский стандарт «ГОСТ Р 53165-2008». Наша технология замеров практически полностью копирует немецкую
И так же, как и в предыдущем случае, пусковой ток в маркировке модели не указан. Пример – 6СТ-60 АПЗ. Правда, российские производители часто выносят этот параметр прямо на корпус батареи. Он так и называется – пусковой ток (у некоторых фирм – стартовый).
Европейский стандарт (кроме Германии) «EN». В отличие от немецкого автопрома, который держится несколько особняком, остальные европейские производители АКБ тестируют свои батареи при тех же -18, но при этом подают на них нагрузку разрядки до 7,5 Вольт на 10 секунд. И результаты тестов можно увидеть в маркировке, а конкретно в трёх её последних цифрах. Для определения силы пускового тока их нужно умножить на 10. Например, маркировка EN 555 065 043 означает, что стартовый ток батареи равен 430 Амперам.
Американский стандарт «SAE». Наиболее жёсткая система тестирования. Температура охлаждения тут та же (-18 градусов по Цельсию). Но вот «разрядочную» нагрузку до 7,5 Вольт подают в течение 30 секунд. Таким образом, при равных значениях силы пускового тока американские стандарты заслуживают наибольшего доверия. Что же до маркировки, то тут тоже всё максимально просто и прозрачно. Сила тока, без всяких математических действий, определяется тремя последними цифрами. Например: А34650 означает, что ток равен 650 Амперам.
Азиатские же производители не смогли договориться о стандартах замеров даже между собой, поэтому некой «единой азиатской системы» не существует. Да и в маркировке их батарей сила тока не указана, поэтому о ней вам придётся узнавать из прилагающейся документации.
Тепловое действие пускового тока
Если перейти к формулам, пусковой ток оказывает тепловое действие на электродвигатель, которое описывается так называемым интегралом Джоуля. Если по простому, то тепловая энергия, производимая электрическим током, пропорциональна квадрату тока, умноженному на время. Обозначается эта величина через I2t.
Хорошая новость в том, что защитный автомат имеет примерно такую же тепловую (время-токовую) характеристику, что и время-токовая характеристика разгона двигателя.
Сравните:
Время-токовые характеристики защитного автомата
Что видим? Для защиты двигателя используются в основном автоматы с характеристикой D, как раз для того, чтобы меньше реагировать на кратковременные перегрузки. Подробнее здесь.
А для пускового тока двигателя график будет примерно такой:
График пускового тока (теоретический) при Кп = 6
Линейность графика – условная. Всё зависит от изменения момента нагрузки в процессе разгона. Теоретический график показан пунктиром. На этом графике Кп = Iп / Iн = 6, но это теоретическое (табличное) значение. Время разгона до номинала = tп.
Реальный график начерчен сплошной линией. На нём Iп` – это реальное значение пускового тока, которое всегда меньше теоретического. Это обусловлено тем, что питающая сеть имеет не нулевое сопротивление, и при повышении тока на проводах возникают потери напряжения.
Понятно, что из-за потерь время разгона будет больше, оно обозначено на графике через tп`.
Теперь повернём последний график, чтобы привести оси к одной системе координат:
Время от тока, если можно так выразиться
Не правда ли, весьма похоже на время-токовую характеристику защитного мотор-автомата?
Получается, что обе характеристики компенсируют друг друга, и при выборе автомата достаточно настроить его уставку на номинальный ток двигателя. При особо тяжелых пусках, когда площадь под кривой пуска двигателя больше площади под кривой защитного автомата, стоит подумать о плавном пуске – УПП либо ПЧ.
Базовые понятия
Для начала рассмотрим несколько базовых понятий, чтобы лучше понимать, что такое пусковой ток автомобильного стартера, и не путать эту величину с другими характеристиками.
Автомобильный стартер является ничем иным, как электродвигателем постоянного тока. Это означает, что он выполняет свою работу (крутит коленвал двигателя), потребляя электрическую энергию, накопленную в аккумуляторной батарее. Эта энергия характеризуется несколькими величинами – напряжением, силой тока и мощностью.
Напряжение, при котором работает нагруженный стартер легкового автомобиля, находится в диапазоне примерно 11-13 В. Что значит нагруженный? Если стартер снять с двигателя и подключить к источнику тока без какой-либо нагрузки, то он будет работать и при гораздо меньшем напряжении. Однако будучи установленным на автомобиле, при напряжении менее 11 В он, как правило, не работает. Это хорошо знакомо тем автолюбителям, у которых была изношенная или полностью разряженная АКБ.
Сила тока, который потребляется нагруженным стартером легкового автомобиля, варьируется в диапазоне 100-500 А. Здесь, как и в случае с напряжением, большую роль играет нагрузка. Если стартер подключить к источнику питания отдельно от двигателя, то тока он потреблять будет гораздо меньше. Из этого следует, что чем большая нагрузка на стартер, тем больше тока он будет потреблять.
Мощностью стартера называется величина, которая зависит от напряжения, при котором он работает, и силы тока, который им потребляется в конкретный момент времени. Так, например, если стартер вашего автомобиля при напряжении 12 В потребляет ток силой 150 А, то его мощность в данный момент составляет 12 × 150 = 1800 Вт.
Из этого всего можно вывести следующее, важное для автомобилистов, понятие. Что происходит, когда АКБ изношена или слабо заряжена? А происходит то, что при работе стартера напряжение на ней просаживается, например, до 10,5 В
Это означает, что, если стартер потребляет все те же 150 А, то его мощность при таких условиях уже не 1,8 кВт, а всего лишь 1,5 кВт. Соответственно, он крутит коленвал вяло, либо ему вообще не хватает мощности, чтобы сдвинуть его с места.
Кроме того, чем большая просадка напряжения происходит на клеммах АКБ, тем меньший пусковой ток она способна выдавать. Отсюда следует, что на наш стартер идет уже не 150 А, а вдвое-втрое меньше. Это приводит к резкому уменьшению мощности, которой оказывается недостаточно, чтобы провернуть коленчатый вал двигателя.
Для некоторых автолюбителей будет интересной еще одна характеристика стартера. Она показывает количество энергии, которое он израсходовал, пока запускал двигатель. Измерить ее можно в А*ч (ампер-часах), а как мы помним, именно в этих единицах указывается емкость АКБ. Это означает, что по пусковому току и времени работы стартера мы можем узнать, на сколько сильно он разрядил нашу батарею.
Рассмотрим все тот же стартер. Допустим, во время всей своей работы он, потребляя ток силой 150 А, запустил двигатель с первой попытки, вращая его в течение 5 секунд. Теперь секунды надо перевести в часы, так как нас интересуют именно ампер-часы. 5 секунд – это примерно 0,0014 часов. Соответственно, наш стартер «взял» из батареи 150 × 0,0014 А*ч, то есть примерно 0,21 А*ч. И это при емкости в 50-60 А*ч.
Но здесь следует понимать, что мы рассмотрели упрощенные условия. Так, при больших токах потребления АКБ садится немного больше, чем это можно рассчитать на бумаге. Кроме того, не всегда двигатель запускается с первого раза, и так далее
Из всего этого важно усвоить следующее. Если стартер не смог прокрутиться из-за ослабленной АКБ, то ему, скорее всего, хвалило не А*ч, как думают многие
Ему не хватило пускового тока, так как разряженная или испорченная батарея не в состоянии выдавать такие большие токи.
Как подобрать автоматический выключатель для двигателя
Правильный подбор автоматического выключателя для защити электродвигателя имеет огромное значение для оборудования. Надежность работы, защита двигателя от аварийных режимов работы и проводки напрямую зависит от подбора автоматического выключателя.
В этой статье наведем условия выбора автоматического выключателя для защиты электродвигателя. Для того чтобы выбрать автоматический выключатель необходимо знать:
— номинальный ток двигателя;
— кратность пускового тока к номинальному;
— максимально допустимый ток электропроводки.
Номинальный ток двигателя – это ток который имеет электродвигатель во время работы при номинальной мощности. Он указывается на паспорте электродвигателе или берется с таблиц паспортных данных электродвигателей.
Кратность пускового тока к номинальному – это соотношение пускового ток который возникает в электродвигателе во время пуска к номинальному. Он тоже указывается на паспорте электродвигателя или в таблицах электродвигателей.
Максимально допустимый ток электропроводки – это допустимый ток, который может проходить по проводу, кабеля, что подключен к электродвигателю.
Условия для правильного выбора автоматического выключателя для защиты электродвигателя:
— номинальный ток автоматического выключателя должен бить больше или равен номинальному току электродвигателя. Например: ток электродвигателя АИР112М4У2 Ін. дв. =11,4А выбираем автоматический выключатель ВА51Г2534 на номинальный ток Ін. = 25А и ток расцепителя Ін..рас. = 12.5А.
После этого проверим автоматический выключатель на не срабатывания при пуске электродвигателя используя условие :
Iу.е.>kзап. · kр.у ·kр.п. ·Iн.дв ·kі
Совет
где Kзап . — коэффициент запаса, который учитывает колебания напряжения, Kзап . = 1,1 ;
kр.у — коэффициент, который учитывает неточность вставки по току срабатывания электромагнитного расцепителя автоматического выключателя , Kр.у = 1,2 ;
kр.п. — коэффициент, который учитывает возможное отклонение пускового тока от его номинального, kр.п. = 1,2 ;
K і — каталожная кратность пускового тока электродвигателя;
Iн.дв — номинальный ток двигателя , А.
Iу.е = 14 · Iн.рос = 14 · 12,5 = 175А
З таблицы электродвигателей находим K і = 7,0 для электродвигателя АИР112М4У2.
Подставляем в условие и определяем
175А > 1,1·1,2·1,2·7,0·11,4
175А > 126,4А
Условие выполнилось, следовательно, автоматический выключатель не сработает при запуске двигателя.
— номинальный ток автоматического выключателя должен быть меньше предельно допустимого тока кабеля которым питается электродвигатель. Например: подключение сделано кабелем АВРГ (3х2,5) который имеет допустимый ток Iдоп =27А. Для водного автомата для защиты электродвигателя условие выполняется потому, что Iдоп =27А > Ін. = 25А .
Алгоритм и основные ошибки.
Как правильно определить необходимую мощность стабилизатора напряжения? – данный вопрос уже неоднократно рассматривался в опубликованных на нашем сайте статьях. Однако мы вернёмся к нему ещё раз, так как мощность – один из важнейших параметров любого стабилизатора и если она определена неверно, то прибор, независимо от топологии, точности и быстродействия, не сможет нормально функционировать и не справится со своими задачами:
- стабилизатор с выходной мощностью меньше необходимой будет постоянно отключаться или вообще не запустится, а возможно и выйдет из строя;
- приобретение устройства с мощностью, намного превышающей требуемое значение, – бесполезная трата средств. Прибор в процессе работы будет недозагружен, что снизит его КПД.
Для определения актуальной мощности стабилизатора рекомендуем действовать по следующему алгоритму: 1) выяснить мощность нагрузки; 2) к значению мощности, потребляемой нагрузкой, прибавить запас; 3) по итоговой величине подобрать подходящую модель стабилизатора. В этой статье мы разберем три указанных пункта и проанализируем наиболее распространённые ошибки, сопутствующие каждому из них.
Пусковые токи электродвигателей
В каждом приборе, устройстве или механизме возникают процессы, называемые пусковыми. Это особенно заметно при начале движения, когда необходимо тронуться с места. В этот момент для первоначального толчка требуется значительно больше усилий, чем при дальнейшей работе данного механизма.
Точно такие же явления затрагивают и электрические устройства – электродвигатели, электромагниты, лампы и другие. Наличие пусковых процессов в каждом из них зависят от того, в каком состоянии находятся рабочие элементы. Например, нить накаливания обычной лампочки в холодном состоянии обладает сопротивлением, значительно меньшим, чем при нагревании в рабочем режиме до 1000 0 С. То есть, у лампы, мощностью 100 Вт сопротивление нити во время работы составит около 490 Ом, а в выключенном состоянии этот показатель снижается до 50 Ом. Поэтому при высоком пусковом токе лампочки иногда перегорают. От всеобщего перегорания их спасает сопротивление, возрастающее при нагревании. Постепенно оно достигает постоянного значения и способствует ограничению рабочего тока до нужной величины.
Влияние пусковых токов в полной мере затрагивает все виды электродвигателей, широко применяющихся во многих областях. Для того чтобы правильно эксплуатировать электроприводы нужно знать их пусковые характеристики. Существует два основных параметра, оказывающих влияние на пусковой ток. Скольжение является связующим звеном между частотой вращения ротора и скоростью вращения электромагнитного поля. Снижение скольжения происходит от 1 до минимума по мере набора скорости. Пусковой момент является вторым параметром, определяющим степень механической нагрузки на валу. Эта нагрузка имеет максимальное значение в момент пуска и становится номинальной после того, как произошел полный разгон механизма.
Следует учитывать особенности асинхронных электродвигателей, которые при пуске становятся эквивалентны трансформатору с короткозамкнутой вторичной обмоткой. Она обладает совсем небольшим сопротивлением, поэтому величина пускового тока при скачке может достичь многократного превышения по сравнению с номиналом. В процессе дальнейшей подачи тока в обмотки, сердечник ротора начинает по нарастающей насыщаться магнитным полем. Возникает ЭДС самоиндукции, под действием которой начинает расти индуктивное сопротивление цепи. С началом вращения ротора происходит снижение коэффициента скольжения, то есть наступает фаза разгона двигателя. При росте сопротивления пусковой ток снижается до нормативных показателей.
В процессе эксплуатации может возникнуть проблема, связанная с увеличенными пусковыми токами. Причиной их возникновения, чаще всего, становится перегрев электродвигателей, перегруженные электрические сети в момент пуска, а также ударные механические нагрузки в подключенных устройствах и механизмах, таких как редукторы и другие. Для решения этой проблемы предусмотрены специальные приборы, представленные частотными преобразователями и устройствами плавного пуска. Они выбираются с учетом особенностей эксплуатации того или иного электродвигателя. Например, используются в основном для агрегатов, соединенных с вентиляторами. С их помощью достигается ограничение пускового тока до двух номиналов. Это вполне нормальный показатель, поскольку во время обычного пуска ток превышает номинальное значение в 5-10 раз. Ограничение достигается за счет измененного напряжения в обмотках.
Обычные двигатели переменного тока получили широкое распространение в промышленном производстве, благодаря очень простой конструкции и низкой стоимости. Их серьезным недостатком считается тяжелый запуск, который существенно облегчается частотными преобразователями. Наиболее ценным качеством этих устройств является способность к поддержке пускового тока в течение одной минуты и более. Самые современные приборы позволяют не только регулировать пуск, но и оптимизировать его по заранее установленным эксплуатационным характеристикам.