Все об углеволокне

Топовые производители карбоновой пленки

Пленочные материалы под карбон выпускают многие американские, европейские и азиатские производители. Надежные и износостойкие изделия встречаются и среди китайских брендов. Вот производители, выпускающие продукцию, достойную внимания автолюбителей.

V3D

Наклейки этого бренда обеспечивают покрытие 3D. Оно долговечное и имеет приятную структуру с достоверной имитацией карбона.

KPMF

Производитель на рынке автотоваров более двадцати лет. Он выпускает множество материалов разных цветов и структуры. Есть матовая и глянцевая продукция. Встречаются изделия с блестками и иными эффектами. Компания изготавливает покрытия для разных видов работ.

Авто в карбоне

Среди них есть как для оклейки кузова целиком, так и для нанесения на простые либо сложные поверхности. Цена такой карбоновой пленки на машину велика. Погонный метр стоит в районе 3500 рублей.

Hexis

Марка из Франции с более чем двадцатилетней историей. Выпускает наклейки всевозможных оттенков и с разными эффектами. Есть как матовые, так и глянцевые изделия. Они обладают декоративным эффектом и защитными свойствами.

Пленка марки Hexis

Изделия относятся к премиум-классу. Поэтому цена данной карбоновой пленки для авто достигает 100000 и более рублей за погонный метр. Но есть у этой марки и линейка относительно бюджетной продукции, которая также обладает высокими характеристиками качества.

«Оракал»

Немецкая фирма, выпускающая карбоновые матовые и глянцевые покрытия. Они отлично держатся на поверхности и долго не теряют своих качеств. Богатая цветовая гамма, доступные цены – это то, за что любят владельцы автомобилей данный бренд. Его изделия востребованы российскими владельцами машин.

TR1

Изделия этого производителя известны дешевизной и качеством. Они долговечны и обеспечивают хорошую защиту кузовных элементов от влияния внешних факторов.Считается аналогом материалов марки 3M. Наклейки легко переносят высокие и низкие температуры.

Подходят для поклейки на мелкие детали и на весь кузов авто. Удаляются, не оставляя следов и повреждений ЛКП.

MxP Max Plus

Материалы этого бренда славятся качеством и невысокой ценой. Они одни из самых дешевых на рынке. Наклейки долговечны и легко удаляются, не оставляя следов. Производитель выпускает продукцию разной фактуры. Она имеет повышенную толщину. Поэтому изделия плохо клеятся на небольшие поверхности со сложной геометрией. Страдают от механических повреждений, даже незначительных.

Армирующие наполнители

Процесс изготовления углеродных волокон заключается в последовательном температурном и механическом воздействиях на исходные органические волокна, приводящих к их карбонизации, графитации и совершенствованию структуры.

На первом этапе нагрев исходных растянутых волокон до температуры 220 °С приводит к образованию поперечных химических связей между макромолекулами полимера.

На втором этапе нагрев до температуры 1000 °С позволяет получить так называемые карбонизованные волокна, на 80…95 % состоящие из элементарного углерода и обладающие достаточно высокой прочностью.

На третьем этапе (термообработка до температуры 1500…2000 °С) получают конечный продукт — графитизированное углеродное волокно с кристаллической структурой, близкой к структуре графита. В зависимости от условий получения и типа исходного сырья предел прочности и модуль упругости углеродных волокон находятся соответственно в пределах 2…3,5 ГПа и 220…700 ГПа. Наибольшей прочностью обладают волокна, которые при нагреве на последнем этапе (Т = 1600 °С) имеют мелкокристаллическую структуру. Высокомодульные материалы получают в результате растяжения волокна при температуре 2700 °С.

В качестве армирующих элементов углеродные волокна применяют в виде жгутов, лент и тканей. Они являются более хрупкими и менее технологичными, чем стеклянные, отличаются химической инертностью, низкой поверхностной энергией, обусловливающей плохое смачивание волокон растворами и расплавами матричных материалов, что в итоге приводит к низкой прочности сцепления на границе «волокно-матрица». Основное достоинство — высокая жесткость. Механические характеристики остаются постоянными до температуры 450 °С, что позволяет применять углеродные волокна с полимерной и металлической матрицами. Волокна характеризуются отрицательным коэффициентом линейного расширения, что в совокупности с положительным коэффициентом у матрицы позволяет синтезировать композиции для конструкций, сохраняющих свои размеры при температурном воздействии. Углеродные волокна используют для изготовления элементов, необходимая жесткость которых является условием, снижающим эффективность применения материалов, армированных стеклянными волокнами. Стоимость углеродных волокон на два порядка выше, чем стеклянных.

Что такое карбон

Карбон – это тканый материал, нити которого превосходят по прочности алюминий. При производстве они особым образом обрабатываются и формуются.

На основе материала производят следующие конструктивные элементы:

— рама;

— вынос руля;

— руль;

— подседельный штырь.

Это основные компоненты, которые часто подбираются для самостоятельной сборки или модернизации байка.

Есть и другие элементы из композита, но в основном это детали, воспринимающие нагрузки в продольном и поперечном направлении.

В чем плюсы карбоновой рамы

Выделяют несколько преимуществ карбона в сравнении с металлом:

— снижение веса конструкции, при прочих равных обычная рама горного велосипеда оказывается легче до 600 гр;

— прочность. Зависит от положения нитей, например, на перья действуют продольное напряжение, а поперечное снижено, потому нити укладываются вдоль. На каждом конструктивном элементе положение нитей подбирается индивидуально, в зависимости от особенностей нагрузки;

— гашение вибраций. Материал отлично перераспределяет вибрации и удары от неровностей дороги по всей своей поверхности. Однако, на горном велосипеде с амортизаторами и приспущенными шинами эффект будет заметно слабее, чем на дорожнике. Особенно заметен эффект при установке руля и выноса;

— даже при длительной эксплуатации композит не теряет своей жесткости. Кроме того, структура не накапливает внутренние напряжения и усталость, то есть структура карбона и его характеристики не зависит от времени.

Усталость металла свойственна алюминиевым и стальным рамам, это свойство подразумевает накопление внутренних напряжений в структуре при длительной эксплуатации;

— ремонтопригодность. При повреждении детали достаточно просто восстановить, причем, восстановленный участок практически не теряет несущих характеристик. Поломки могут происходить при падениях и ударах, карбон плохо держит точечные удары, потому может легко треснуть или даже проломиться.

В чем минусы карбоновой рамы

Недостатки:

— несмотря на свои качества, карбон может ломаться, особенно при точечных ударных воздействиях, не соответствующих положениям нитей. Точечные удары часто приводят к повреждениям, вплоть до серьезных поломок рамы;

— негативным аспектом является цена, один только вынос руля может стоить 6-7 тысяч рублей. Однако, карбон на велосипеде позволяет сэкономить в пределах 1-1,5 кг;

— прикипание. Если неподвижно установить детали из карбона, например, подседельный штырь в раме, то через некоторое время они буквально сливаются в целое. Разъединить их без поломок очень сложно, а для предотвращения этой проблемы необходимо использовать специальные смазки.

Применение углепластиков

Углепластик (карбон) имеет невероятно широкую сферу применения. Углеродные материалы и изделия из них можно встретить в самых разнообразных отраслях промышленности.

В строительстве, например, углеродные ткани применяются в Системе внешнего армирования. Использование углеродной ткани и эпоксидного связующего при ремонте несущих конструкций (мостов, промышленных, складских, жилых зданий) позволяет проводить реконструкцию в сжатые сроки и со значительно меньшими трудозатратами по сравнению с традиционными способами. При этом, хотя срок ремонта снижается в разы, срок службы конструкции увеличивается также в несколько раз. Несущая способность конструкции не просто восстанавливается, но и увеличивается в несколько раз.

В авиации углеродные материалы используются для создания цельных композитных деталей. Сочетание легкости и прочности получаемых изделий позволяет заменить алюминиевые сплавы углепластиковыми. Композитные детали, при их весе в 5 раз меньшем, чем аналогичных алюминиевых, обладают большей прочностью, гибкостью, устойчивостью к давлению и некоррозийностью.

В атомной промышленности углепластики используются при создании энергетических реакторов, где основным требованием к используемым материалам является их стойкость к высоким температурам, высокому давлению и радиационная стойкость

Кроме этого, в атомной отрасли особое внимание отдается общей прочности внешних конструкций, поэтому Система внешнего армирования также имеет обширное применение

В автомобилестроении карбон (или углепластик) используется для производства как отдельных деталей и узлов, так и для автомобильных корпусов целиком. Высокое отношение прочности к весу позволяет создавать безопасные, и в то же время экономичные автомобили: снижение веса автомобиля за счет углепластиков на 30 % позволяет снизить выброс CO2 в атмосферу на 16% (!), благодаря снижению расхода топлива в несколько раз.

В гражданской аэрокосмической отрасти композиционные материалы занимают очень прочные позиции. Высокие нагрузки космических полетов ставят соответствующие требования и материалам, которые используются при производстве деталей и узлов. Углеродные волокна и материалы из них, а также из карбидов работают в условиях высоких температур и давления, при высоких вибрационных нагрузках, низких температурах космического пространства, в вакууме, в условиях радиационного воздействия, а также воздействия микрочастиц и т.п.

В судостроении высокая удельная прочность, коррозионная стойкость, низкая теплопроводность, немагнитность и высокая ударостойкость делают углепластики лучшим материалом для проектирования и создания новых материалов и конструкций из них. Возможность сочетать в одном материале высокую прочность и химическую инертность, а также вибро-, звуко- и радиопоглощение обуславливает выбор именно этого материала для изготовления конструкций различных видов гражданских судов.

Одной из наиболее значимых областей применения углеродных материалов в мировой практике является ветроэнергетика. В нашей стране эта отрасль находится, по сути, в стадии зарождения, в то время как во всем мире ветряки появляются и в незаселенных районах, и в прибрежных зонах, и на морских платформах. Легкость и непревзойденные показатели прочности на изгиб углепластиков позволяют создавать более длинные лопасти, которые, в свою очередь, обладают большей энергопроизводительностью.

В железнодорожной отрасли углепластики имеют широкое применение. Легкость и прочность материала позволяет облегчить конструкцию железнодорожных вагонов, снизив тем самым общий вес составов, что позволяет в дальнейшем как увеличивать их длину, так и улучшать скоростные характеристики. В то же время углепластики могут использоваться и при строительстве железнодорожного полотна и прокладке железнодорожных проводов: высокие показатели прочности на изгиб позволяют увеличивать длину проводов, сокращая необходимое количество опор и в то же время снижая риск их провисания.

Композиционные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, детали ЭВМ и многое другое .

Достоинства

  • Обладает достаточной прочностью, чтобы выдерживать большие компрессионные нагрузки, можно делать менее густую армированную сетку или брать для этой цели прутья тоньше.
  • Пластик в 10 раз легче металла, что облегчает и удешевляет перевозку.
  • Для монтажа сетки и нарезки прутьев не нужна сварочная аппаратура, что упрощает сборку и позволяет экономить на оборудовании.
  • Не реагирует со щелочью и не поддается коррозии.
  • Хорошо переносит низкие температуры и не разрушается.
  • Обладает долговечностью — служит до 75 лет.

Недостатки арматуры из углепластика

  • Высокая стоимость, ее чаще используют в качестве усилителя, опоры в составе конструкции из менее дорогих материалов. Правда, судя по отзывам, композитная арматура дает возможность экономить на перевозке, нарезке и монтаже, в комплексе она получается вполне доступной.
  • Может ломаться при ударных нагрузках, а также при попытках её согнуть, то есть требует аккуратного обращения при транспортировке, хранении и собственно монтаже.
  • Отличить подделку рядовому потребителю невозможно, для оценки качества требуется особое дорогостоящее оборудование: ультразвук, рентген, оптическая голография и тому подобное.
  • Малейшая трещина, невидимая глазу, снижает прочностные характеристики.
  • Отсутствие огнестойкости — при 600°C начинает размягчаться, нужны меры по защите на случай пожара.

Правила вязки

Изготавливая арматурную сетку, нужно следить, чтобы соединение прутьев осуществлялось внахлест. Ширина шага должна составлять не более 250 мм. Надежность соединения стыков никак не влияет на качество самого бетона, но лучше их проверять, чтобы сама конструкция не сместилась во время заливки.

Все угловые элементы должны быть зафиксированы при установке каркаса. Если вязка происходит непосредственно в котловане, то опорная конструкция должна быть укреплена сразу, до установки опалубки.

Чтобы ручная вязка происходила достаточно быстро, необходимо заранее подготовить инструменты. Для этого понадобятся кусачки, плоскогубцы, винтовой крючок. Проволоку нужно заранее нарезать на кусочки примерно по 20 см, если диаметр пластиковых стержней не превышает 16 мм. Вязать можно угловыми узлами, двухрядными, крестовыми или мертвыми.

Стоимость по Москве

Цена на углепластковую арматуру зависит от сечения диаметра и не очень отличается от аналогов.

Вид изделия Сечение, мм Материал Цена, рубли/м
АКС (бухты) Ø 4 Стекло 7,60
Ø 6 9,30
Ø 8 15,90
Ø 10 23,30
Ø 12 29,30
АКС (прутья) Ø 6 8,60
Ø 8 от 12,90
Ø 10 25,30
Ø 14 31,54
Ø 16 56,70
АКУ (прутья) Ø 4 Углепластик от 8,00
Ø 6 9,73
Ø 7 10,62
Ø 8 12,90
Ø 14 33,00
БПА 250 Ø 4 Базальт 6,12
Ø 6 7,08
Ø 8 9,36
Ø 10 11,28

Для домашнего применения: стяжки полов, кирпичной кладки, возведения колонн и прочего, достаточно купить базальтовую арматуру (или углепластиковую) диаметром 4-6 мм.

Обзор ассортимента XPS CARBON от ТЕХНОНИКОЛЬ

Для создания теплоизоляции, оптимально соответствующей запросам потребителей, компания изготовила экструдированный пенополистирол нескольких видов.

  1. CARBON SOLID — плиты для транспортных развязок, кровли и фундамента. Материал обеспечивает прочное и жесткое основание, не поглощающее влагу. Плотность 50-60 кг/м3, прочность на сжатие 700 МПа.
  2. CARBON PROF — в процессе изготовления в пенополистирол добавлены наночастицы графита, которые придают материалу особую прочность и обеспечивают самую низкую теплопроводности среди модификаций Карбона. Утеплитель используется профессиональными строителями при изоляции кровли торговых центров и жилых комплексов. Материал применяется при монтаже фундамента и пола по грунту. Добавление маркировки RF означает обработку плит антипиренами, улучшающими пожарную безопасность.
  3. CARBON PROF SLOPE — набор плит, рассчитанных на создание уклона кровли от 1,7 до 8,3%. Использование утеплителя позволяет обеспечить сток воды и изменить ее направление около вентиляционных шахт и светильников. Клиновидные плиты исключают «мокрые» процессы под стяжку и ускоряют монтаж кровли.
  4. CARBON ECO — материал обеспечивает качественную теплоизоляцию и защиту от влаги и пара. Благодаря экологической чистоте он распространен в частном строительстве. Безопасность утеплителя подтверждена в лаборатории. При производстве экструзионный пенополистирол насыщается наноуглеродом, что придает плитам серебристый оттенок и дополнительную эффективность при изоляции объектов. Материал с маркировкой FAS имеет шероховатую поверхность, которая обеспечивает улучшенную адгезию со слоем штукатурки. Выемка по периметру плиты облегчает монтаж и исключает мостики холода. Добавка антипирена снижает возможность возгорания теплоизоляции. Этот тип утеплителя используется для фасадов коттеджей.

Продукция под маркой SP является специальной разработкой для конструкции под названием «шведская плита». Использование материала ECO SP позволяет ускорить монтаж и снизить теплопотери фундамента. Значительная толщина плит, составляющая 100 мм, дает возможность обеспечить качественное утепление основания и выровнять пол под финишное покрытие. Чтобы материал выдержал предполагаемую нагрузку, его прочность на сжатие составляет 400 кПа. XPS DRAIN — продукция Технониколь, созданная для изоляции фундамента. Плиты с нулевым водопоглощением используются для устройства дренажа и отвода грунтовых и дождевых вод.

«Сухой» способ обработки деталей карбоновой плёнкой

Если автомобилист хочет понять, как клеить карбоновую плёнку без использования мыльного раствора, он должен знать о принципах обработки деталей посредством второго «сухого» метода. На самом деле, этот способ требует опыта и знаний, так как считается более сложным и трудоёмким. Квалифицированные специалисты не рекомендуют пользоваться таким методом обработки автовладельцам, которые ни разу не работали с винилом и не знают о свойствах и особенностях используемого материала. Для того чтобы обклеить капот «сухим» способом, необходимо:

  • закрытое помещение, температура воздуха в котором держится в пределах 20˚С;
  • чистая машина ( , царапин, отпечатков масла). Специалисты рекомендуют обклеивать только свежеокрашенное авто;
  • производственный фен;
  • канцелярский нож.

Главное сходство двух методов, посредством которых можно обработать карбоном капот автомобиля или другие его детали, заключается в необходимости очистить и обезжирить транспортное средство. Принципиально важным условием считается избавление кузова от различных изъянов, в частности, царапин и ржавчины. Для того чтобы приклеить материал следует отделить его от картонной подкладки. Затем карбоновая плёнка должна быть аккуратно приложена верхней частью к обрабатываемому элементу авто. Следующий шаг заключается в необходимости разгладить карбон, прижимающие «поглаживания» следует производить строго от центра к краям. Обрабатывая карбоном автомобиль нужно заботиться о том, чтобы винил одинаково ровно прижимался к поверхности. Целесообразно воспользоваться шпателем. При наличии пузырей и складок часть неровно прилегающей плёнки должна быть приподнята и заново приклеена.

Обклеенный «сухим» способом автомобиль нужно просушить производственным феном, что позволит в достаточной мере прогреть материал. Благодаря этой манипуляции активизируется клей, карбоновая плёнка быстрее схватится за кузов авто. При проведении работ следует учитывать температуру нагреваемого винила, так как его нельзя слишком сильно перегревать.

После того как удалось нанести карбоновую плёнку на авто, посредством шпателя следует вновь разгладить материал. Все лишние и свисающие части карбона следует отрезать канцелярским ножом. Для просушки авто потребуется около 6–7 часов, при этом машину следует расположить в сухом тёплом помещении.

Виды волокон карбона. Полотно

Волокна могут быть короткими, резаными, их называют «штапелированными», а могут быть непрерывные нити на бобинах. Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).

Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric. Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.

В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа содержится 3-4 слоя .

3.Связующие

В качестве матриц (связующих) при изготовлении судовых конструкций используются преимущественно эпоксидные н полиэфирные синтетические смолы .

Эпоксидные смолы используются двух типов: термопласты и реактопласты. Термопласты все еще находятся в стадии разработки из-за их высокой стоимости. Чаще всего используют смолы реактопласты, которыми пропитывают углеродистые волокна, а после подвергают нагреванию. Процесс, когда волокно и смолу соединяют в матрице, называют полимеризацией .

До момента отверждения связующее остается вязкотекучей жидкостью. В определенных условиях (при повышении температуры, добавлении иницирующих реакцию веществ и т. п.) молекулы этой жидкости взаимодействуют между собой, образуя большие пространственные молекулы, вследствие чего вся масса связующего необратимо отверждается — затвердевает.

Сравнительно новым классом термостойких высокомолекулярных соединений являются полиамидные смолы. Их главное отличие от полиэфирных и эпоксидных смол заключается в более высоких механических характеристиках и большей стойкости к окислению при высоких температурах (после отверждения). Однако применение полиамидных смол требует разработки специальной технологии нзготовлення ПКМ. Основные характеристики перечисленных смол приведены в табл. 1 .

Технология производства

Получить углеродное волокно можно из самых разных типов полимеров. Режим обработки определяет две основные разновидности таких материалов — карбонизированный и графитизированный типы

Важное различие существует между волокном, получаемым из ПАН и из различных видов пека. Качественные волокна углерода, как высокопрочной, так и высокомодульной категории, могут иметь несходный уровень твердости и модуль упругости

Принято относить их к разным маркам.

Волокна делают в формате нити либо жгута. Их образует от 1000 до 10000 непрерывных элементарных волокон. Ткани из этих волокон также можно выработать, как и жгуты (в этом случае число элементарных волокон еще больше). Исходным сырьем выступают волокна не только простых, но и жидкокристаллических пеков, а также полиакрилонитрила. Процесс получения подразумевает сначала выработку исходных волокон, а затем их прогревают в воздухе при 200 — 300 градусах.

В случае с ПАН такой процесс получил название предварительной обработки или повышения огневой стойкости

Пек после подобной процедуры получает такое важное свойство, как неплавкость. Частично волокна окисляются

Режим дальнейшего прогрева определяет, будут ли они относиться к карбонизированной или графитизированной группе. Окончание работы подразумевает придание поверхности необходимых свойств, после чего ее аппретируют либо шлихтуют.

Окисление в воздушной атмосфере повышает огневую стойкость не только в результате окисления. Свой вклад вносят не только частичное дегидрирование, но и межмолекулярное сшивание и иные процессы. Дополнительно уменьшается подверженность материала плавлению и улетучивание углеродных атомов. Карбонизация (в высокотемпературной фазе) сопровождается газификацией и уходом всех посторонних атомов.

Последующая их карбонизация проводится в окружении азота при 1000 — 1500 градусах. Оптимальный уровень прогрева, по мнению ряда технологов, составляет 1200 — 1400 градусов. Высокомодульное волокно придется прогревать примерно до 2500 градусов. На предварительном этапе ПАН получает лестничную микроструктуру. За ее возникновение «отвечает» конденсация на внутри молекулярном уровне, сопровождающаяся возникновением полициклического ароматического вещества.

Чем больше возрастает температура, тем больше будет и структура циклического типа. После окончания термообработки по технологии размещение молекул либо ароматических фрагментов таково, что главные оси будут параллельны волоконной оси. Натяжение позволяет избежать падения степени ориентации. Особенности разложения ПАН при термообработке определяются концентрацией привитых мономеров. Каждый тип таких волокон определяет изначальные условия обработки.

Жидкокристаллический нефтяной пек требуется долгое время держать при температуре от 350 до 400 градусов. Такой режим приведет к конденсации полициклических молекул. Их масса повышается, и постепенно происходит слипание (с образованием сферолитов). Если нагрев не останавливается, сферолиты растут, молекулярная масса увеличивается, и итогом становится формирование неразрывной жидкокристаллической фазы. Кристаллы изредка растворимы в хинолине, но обычно как в нем, так и в пиридине они не растворяются (это зависит от нюансов технологии).

Волокна, полученные из жидкокристаллического пека с 55 — 65% жидких кристаллов, текут пластически. Прядение ведут при 350 — 400 градусах. Высокоориентированную структуру формируют первоначальным нагревом в воздушной атмосфере при 200 — 350 градусов и последующим выдерживанием в инертной среде. Волокна марки Thornel P-55 приходится прогревать до 2000 градусов, чем выше модуль упругости, тем выше должна быть температура.

Научные и инженерные работы в последнее время обращают все больше внимания на технологию с применением гидрирования. Первоначальная выработка волокон часто производится гидрированием смеси каменноугольного пека и нафталовой смолы. При этом должен присутствовать тетрагидрохинолин. Температура обработки составляет 380 — 500 градусов. Твердые примеси можно удалить за счет фильтрации и прогонки через центрифугу; после этого сгущают пеки при повышенной температуре. Для производства карбона приходится применять (в зависимости от технологии) довольно разнообразное оборудование:

  • слои, распределяющие вакуум;
  • насосы;
  • герметизирующие жгуты;
  • рабочие столы;
  • ловушки;
  • проводящие сетки;
  • вакуумные пленки;
  • препреги;
  • автоклавы.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector