Калькулятор оборотов агрегатов — скорости автомобиля

Расчет диаметра шкива

Вначале следует определить передаточное число, исходя из заложенной скорости вращения ведущего вала n1 и потребной скорости вращения ведомого вала n2/ Оно будет равно:

i=n1/n2

Если уже имеется в наличии готовый двигатель с приводным колесом, расчет диаметра шкива по передаточному отношению i проводится по формуле:

D2= D1/i.

Если же механизм проектируется с нуля, то теоретически подойдет любая пара приводных колес, удовлетворяющих условию:

D2/D1=n2/n1

На практике расчет ведущего колеса проводят, исходя из:

  • Размеров и конструкции ведущего вала. Деталь должна надежно крепится на валу, соответствовать ему по размету внутреннего отверстия, способу посадки, крепления. Предельно минимальный диаметр шкива обычно берется из соотношения Dрасч ≥ 2,5 Dвн
  • Допустимых габаритов передачи. При проектировании механизмов требуется уложиться в габаритные размеры. При этом учитывается также межосевое расстояние. чем оно меньше, тем сильнее сгибается ремень при обтекании обода и тем больше он изнашивается. Слишком большое расстояние приводит к возбуждению продольных колебаний. Расстояние также уточняют, исходя из длины ремня. Если не планируется изготовление уникальной детали, то длину выбирают из стандартного ряда.
  • Передаваемой мощности. Материал детали должен выдержать угловые нагрузки. Это актуально для больших мощностей и крутящих моментов.

Окончательный расчет диаметра окончательно уточняют по результату габаритных и мощностных оценок.

Ставим редуктор с другим передаточным числом

Что будет, если заменяемый редуктор имеет отличные от установленного параметры? Для примера рассмотрим передаточные числа редукторов ВАЗ. Линейка агрегатов представлена четырьмя редукторами. Их числа укладываются в диапазон от 3,9 до 4,44.

Редуктор с числом 3,9 будет самым быстрым из семейства, а с числом 4,44 – самым тяговитым. Потому как в первом случае передаваемая входным валом мощность уменьшается только в 3,9 раза против 4,44. Получается, что если редуктор быстрее передает момент вращения, автомобиль становится более «шустрым». Если заменить редуктор на вариант с пониженным передаточным числом, машина медленнее разгоняется, но становится более проходимой и тяговитой.

При установке редуктора с отличным от заводского числом в обязательном порядке следует проверять показания спидометра. Чаще всего он начинает привирать. Проблема может решаться регулировкой, а иногда приходится менять тросик спидометра. Самое сложное при работах по замене редуктора – это не снятие и установка, как может показаться изначально, а регулировка и настройка. Без грамотной регулировки даже правильно подобранный редуктор можно привести в негодность за несколько тысяч пробега.

Определение мощности по току

Если у вас “в поле” нет под рукой вышеуказанных таблиц, зато имеются токоизмерительные клещи, рассчитать мощность электродвигателя можно по результатам замеров при его работе под напряжением.

Для этого отключаете рубильник питания агрегата и вскрываете брно. Провода в нем уложены как правило очень плотно, чтобы подлезть к ним клещами, придется их временно распрямить и развести между собой.

С самих клемм ничего откидывать не нужно. После этого включаете эл.двигатель под напряжение и даете ему несколько минут поработать под нагрузкой (не на холостом ходу!)

Токоизмерительными клещами обхватываете одну из фаз и записываете данные замера.

Помимо тока нужно знать еще и фактическое напряжение. Измерение делаете между фаз приходящего кабеля питания.

Далее, чтобы вычислить мощность, воспользуйтесь известной формулой:

Подставив в нее данные (U в киловольтах!, а ток в амперах) вы узнаете полную мощность движка в кВа. При этом следует учесть, что мощность эл.двигателя не зависит от схемы соединения обмоток статора, будь то треугольник или звезда.

Просто вы получите другие данные по току и напряжению, значение же самой мощности останется прежним.

Дабы узнать мощность электродвигателя в кВт, т.е. на валу, достаточно умножить полученное значение на cosϕ (коэфф. мощности=0,75-0,85) и на КПД (0,75-0,95).

Если у вас нет точных данных этих величин (что чаще всего и наблюдается), подставьте усредненные параметры:

cosϕ=0,8

ⴄ=0,85

Полученный результат округляете до целого и узнаете искомую мощность.

https://youtube.com/watch?v=vGJJl3SL4DQ%3F

Источники – //cable.ru, Кабель.РФ

8.1 Расчетная схема быстроходного вала

Определение реакций в подшипниках

Построение эпюр изгибающих и крутящих моментов (быстроходный
вал)

1. Вертикальная плоскость

а) определяем опорные реакции

б) Строим эпюру изгибающих моментов относительно оси X

MA=0; MB=0; MC=RBY∙lБ; MD=RBY∙(lБ+l1)+RCY∙l1; MD=Fa1∙d1/2

2. Вертикальная плоскость

а) определяем опорные реакции

;;

б) Строим эпюру изгибающих моментов относительно оси Y

MA=0; MB=-FM∙lM; MC=-FM∙(lM+lБ)+RBX∙lБ; MC=Ft1∙lБ; MD=0

3. Строим эпюру крутящих моментов

4. Суммарные радиальные реакции

5. Суммарные изгибающие моменты в наиболее нагруженных
сечениях

Проверка прочности валов

Сечение В

материал вала: Сталь 45 (σ-1=380 Н/мм2
τ-1=220.4 Н/мм2 ) d=30 мм;

а) нормальные напряжения

б) касательные напряжения

в) коэффициент концентрирования нормальных и касательных
напряжений

Kσ и Kτ – эффективные коэффициенты
концентрации напряжений

Kd – коэффициент влияния абсолютного
размера поперечного сечения

по таблице 11.2 (посадка с натягом) выбираем

KF – коэффициент влияния шероховатости по
таблице 11.4 KF=1.40

г) предел выносливости в расчетном сечении вала

д) коэффициент запаса прочности

е) общий коэффициент запаса прочности

Сечение С

материал вала: Сталь 45 (σ-1=390 Н/мм2
τ-1=220.4 Н/мм2 ) d=30 мм;

а) нормальные напряжения

б) касательные напряжения

в) коэффициент концентрирования нормальных и касательных
напряжений

Kσ и Kτ – эффективные коэффициенты
концентрации напряжений

Kd – коэффициент влияния абсолютного
размера поперечного сечения

по таблице 11.2 (посадка с натягом) выбираем ;

KF – коэффициент влияния шероховатости по
таблице 11.4 KF=1.40

г) предел выносливости в расчетном сечении вала

д) коэффициент запаса прочности

е) общий коэффициент запаса прочности

Сечение D

материал вала: Сталь 45 (σ-1=390 Н/мм2
τ-1=220.4 Н/мм2 ) d=33.64 мм;

а) нормальные напряжения

б) касательные напряжения

в) коэффициент концентрирования нормальных и касательных
напряжений

Kσ и Kτ – эффективные коэффициенты
концентрации напряжений

Kd – коэффициент влияния абсолютного
размера поперечного сечения

по таблице 11.2 выбираем Kσ=1.7 Kτ=1.55

по таблице 11.3 выбираем Kd=0.87 для (Kσ)D; Kd=0.76 для (Kτ)D

KF – коэффициент влияния шероховатости по
таблице 11.4 KF=1.40

г) предел выносливости в расчетном сечении вала

д) коэффициент запаса прочности

е) общий коэффициент запаса прочности

Крутящий момент редуктора

Крутящий момент на выходном валу – вращающий момент на выходном валу. Учитывается номинальная мощность , коэффициент безопасности , расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.

Номинальный крутящий момент – максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности – 1 и продолжительность эксплуатации – 10 тысяч часов.

Максимальный вращающий момент – предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.

Необходимый крутящий момент – крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.

Расчетный крутящий момент – значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:

Mc2 = Mr2 x Sf ≤ Mn2

где Mr2 – необходимый крутящий момент; Sf – сервис-фактор (эксплуатационный коэффициент); Mn2 – номинальный крутящий момент.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

u12 = ± Z2/Zи u21 = ± Z1/Z2,

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы  узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Расчет оборотов двигателя по передаточному числу

Как рассчитать передаточное отношение шестерен механической передачи.

В этой статье я приведу пример расчета передаточного отншения шестерен разного диаметра, с разным количеством зубьев

Данный расчет применяется в том случае, когда важно определить к примеру скорость вращения вала редуктора при известной скорости привода и характеристиках зубьев

Естественно, можно произвести замеры частоты вращения выходного вала, однако в некоторых случаях требуется именно расчет. Помимо этого, в теоретической механике, при конструировании различных узлов и механизмов требуется рассчитать шестерни, чтобы получить заданную скорость вращения.

Термин передаточное число является весьма неоднозначным. Он перекликается с термином передаточное отношение, что не совсем верно. Говоря о передаточном числе, мы подразумеваем сколько оборотов совершит ведомое колесо (шестерня) относительно ведущего.

Для правильного понимания процессов и строения шестерни – следует предварительно ознакомится с ГОСТ 16530-83.

Итак, рассмотрим пример расчета с использованием двух шестерен.

Чтобы рассчитать передаточное отношение мы должны иметь как минимум две шестерни. Это называется зубчатая передача. Обычно первая шестерня является ведущей и находится на валу привода, вторая шестерня называется ведомой и вращается входя в зацепление с ведущей. Пи этом между ними может находится множество других шестерен, которые называются промежуточными. Для упрощения расчета рассмотрим зубчатую передачу с двумя шестернями.

В примере мы имеем две шестерни: ведущую (1) и ведомую (2). Самый простой способ заключается в подсчете количества зубьев на шестернях. Посчитаем количество зубьев на ведущей шестерне. Так же можно посмотреть маркировку на корпусе шестерни.

Представим, что ведущая шестерня (красная) имеет 40 зубьев, а ведомая(синяя) имеет 60 зубьев.

Разделим количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В нашем примере: 60/40 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.

Такое передаточное отношение означает, что красная, ведущая шестерня должна совершить полтора оборота, чтобы синяя, ведомая шестерня совершила один оборот.

Теперь усложним задачу, используя большее количество шестерен. Добавим в нашу зубчатую передачу еще одну шестерню с 14 зубьями. Сделаем ее ведущей.

Начнем с желтой, ведущей шестерни и будем двигаться в направлении ведомой шестерни. Для каждой пары шестерен рассчитываем свое передаточное отношение. У нас две пары: желтая-красная; красная-синяя. В каждой паре рассматриваем первую шестерню как ведущую, а вторую как ведомую.

В нашем примере передаточные числа для промежуточной шестерни: 40/14 = 2,9 и 60/40 = 1,5.

Умножаем значения передаточных отношений каждой пары и получаем общее передаточное отношение зубчатой передачи: (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

Определим теперь частоту вращения.

Используя передаточное отношение и зная частоту вращения желтой шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (об/мин) Рассмотрим пример зубчатой передачи с тремя шестернями. Предположим, что частота вращения желтой шестерни 340 оборотов в минуту. Вычислим частоту вращения красной шестерни.

Будем использовать формулу: S1 × T1 = S2 × T2,

S1 – частота вращения желтой (ведущей) шестерни,

Т1 – количество зубьев желтой (ведущей) шестерни;

S2- частота вращения красной шестерни,

Т2 – количество зубьев красной шестерни.

В нашем случае нужно найти S2, но по этой формуле вы можете найти любую переменную.

340 rpm × 7 = S2 × 40

Получается, если ведущая, желтая шестерня вращается с частотой 340 об/мин, тогда ведомая, красная шестерня будет вращаться со скоростью примерно 60 об/мин. Таким же образом рассчитываем частоту вращения пары красная-синяя. Полученный результат – частота вращения синей шестерни – будет являться искомой частотой вращения всей зубчатой передачи.

Источник

Звезды Renthal

Линейка высококачественных передних звезд английской компании Rentlal обработанных на ЧПУ и изготовленных из никель-хром-молибденового сплава 655M13 представлена тремя моделями:

ULTRALIGHT – звезда премиум класса с канавками с обеих сторон – удаляет грязь от точек контакта между цепью и звездочкой. Облегченная конструкция обеспечивает максимальную передачу мощности, уменьшает износ и увеличивает срок службы трансмиссии. Выбор профессиональных гонщиков и команд по мотокроссу. Производится с количеством зубьев 12,13,14,15,16 и 17.

Grooved – звезда с канавками с обеих сторон – удаляет грязь от точек контакта между цепью и звездочкой. Производится с количеством зубьев 12,13 и 14.

Standard – как мы видим из названия, это обычная стандартная звезда с высокой износостойкостью и долговечностью, выпускаемая с количеством зубьев: 10,11,12 и 13.

передаточные числа рядов и главных пар

Калькулятор КПП позволяет рассчитать зависимость скорости автомобиля от рабочих оборотов двигателя на каждой передаче с учетом ряда параметров: передаточное отношение ряда в КПП, главной пары (редуктора), размера колес. Расчет ведется для двух разных конфигураций КПП для проведения сравнительного анализа. Это позволяет правильно подобрать тюнинговый ряд и ГП для коробки переключения передач.Результаты расчета КПП выводятся в табличном и графическом виде. Графики позволяют произвести визуальный анализ, оценить «длину» каждой передачи, и «разрыв» между ними (на сколько падают обороты двигателя при переключении на повышенную передачу)
Заполните графы параметров колеса: ширину и высоту профиля покрышки (ищите маркировку на боковине покрышки) и диаметр колесного диска

Обратите внимание: маркировка R на покрышке означает ее конструкцию – радиальная, например, R14 — покрышка радиальной конструкции диаметром 14 дюймов.Введите передаточное число главной пары и каждой передачи в соответствующие графы калькулятора КПП (разделитель дробной части – точка). Если шестой передачи нет, вводите ноль.Нажмите кнопку «Рассчитать КПП».
Ряды КПП переднеприводных ВАЗ (конструктив 2108)
2 передача
3 передача
4 передача
5 передача
6 передача
стандартный
3,636
1,950
1,357
0,941
0,784

5 ряд
2,923
1,810
1,276
0,969
0,784
6 ряд
2,923
1,810
1,276
1,063
0,941
7 ряд
2,923
2,050
1,555
1,310
1,129
8 ряд
3,415
2,105
1,357
0,969
0,784
11 ряд
3,636
2,222
1,538
1,167
0,880
12 ряд
3,170
1,950
1,357
1,031
0,784
15 ряд
3,170
1,810
1,276
0,941
0,730
18 ряд
3,170
2,105
1,480
1,129
0,880
20 ряд
3,170
1,950
1,276
0,941
0,730
102 ряд
3,170
1,950
1,357
0,941
0,730
103 ряд
2,923
1,950
1,357
0,941
0,692
104 ряд
2,923
1,950
1,357
1,031
0,692
111 ряд
3,170
2,222
1,538
1,167
0,880
200 ряд
2,923
2,222
1,76
1,39
1,167


www.kartuning.ru

Определяем передаточное отношение редуктора вручную.

Очень часто клиенты при обращении в нашу организацию, говорят, что вышедший из строя редуктор не имеет шильда и они не имеют понятия, как узнать передаточное число редуктора. Данному вопросу и будет посвящён этот раздел сайта.

Итак, расчёт передаточного числа цилиндрического редуктора состоит из следующих операций;

  • считаем количество зубьев каждой шестерни и вала-шестерни всех ступеней редуктора;
  • делим количество зубьев шестерни на количество зубьев вала-шестерни, работающего с ней в паре;
  • производим эту операцию для каждой ступени — получаем передаточное число (отношение) каждой ступени;
  • перемножаем полученные числа друг на друга — получаем общее передаточное число редуктора

Расчёт передаточного числа червячного редуктора состоит из следующих этапов:

  • считаем количество зубьев на червячном колесе
  • определяем количество заходов червяка (например, обычное сверло имеет два захода)
  • делим количество зубьев колеса на количество заходов червяка и получаем передаточное отношение червячного редуктора
  • в случае, если редуктор двухступенчатый, делаем это для каждой ступени и умножаем друг на друга

Вспомним физику

На главном валу коробки передач (который идет на колеса) стоит датчик, который считает частоту его вращения. Он соединен с прибором прочным вращающимся тросиком, на противоположной стороне которого находится мудреное (на первый взгляд) устройство, состоящие из пластин, пружин и магнита, соединенное со стрелкой прибора. В электронном спидометре вместо тросика электрический провод передающий сигналы от вала к контроллеру спидометра.

В любом случае, расчет скорости движения (а заодно и пробега) происходит по установленному алгоритму, в котором учитываются два фактора: количество оборотов колеса и длина его окружности

Важно: при расчете предусматривается размер колеса, рекомендованный производителем. То есть, если компания настоятельно рекомендует использовать 14-дюймовые колеса, спидометр будет считать скорость так, как будто на авто стоят именно они. А если вы ставите 16-дюймовые диски (и, соответственно, резину того же диаметра), спидометр будет врать

Сильно?

А если вы ставите 16-дюймовые диски (и, соответственно, резину того же диаметра), спидометр будет врать. Сильно?

Знающие люди утверждают: производители авто знакомы с тягой граждан ставить на авто колеса большего диаметра, чем рекомендован заводом, поэтому настраивают прибор так, чтобы он выдавал большую скорость, чем есть на самом деле (погрешность прибора). Таким образом, при установке колеса большего диаметра, погрешности вроде как нивелируются.

На самом деле, спидометр врет в любом случае. Хотя бы потому, что кроме погрешности самого прибора существуют и другие допуски, которые влияют на точность показаний. Датчик, например, тоже может врать. Считается, что для заднеприводных авто скорость измеряется точнее, чем для переднеприводных. А все потому, что у переднеприводных добавляется еще одна погрешность, на которую влияет поворот ведущего (переднего) колеса. Как-то так!

Вернемся к теме нашего разговора. Если вы установили на авто колеса большего размера, оно, проходя то же расстояние, будет делать меньшее число оборотов. На спидометре скорость будет меньше, чем есть на самом деле. Насколько меньше?

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки. Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Цепи EK Chain

Еще один из лидеров по производству цепей – японская компания EK Chain. Компания была основана в 1941 году и именно она первой создала в 1974 году революционную технологию O-Ring. В 1988 году была разработана технология Quadra-X Ring с уменьшением трения сальника на 40%, а срок службы такой цепи увеличился на 50%. В 1997 году появились цепи серий MRD и MRDL разработанные специально для мотокросса.

– для мотокросса в линейке производителя 4 вида цепей O-Ring без сальников – 420SH и 428SHDR (для мини-мотоциклов), а также 520 цепь серии MRD. Цепи выпускаются в следующих цветовых решениях: фиолетовая, золотая, серебряная, красная, зеленая, синяя, желтая и оранжевая.

– для эндуро и внедорожных гонок в тяжелых условиях подойдут цепи с сальниками Quadra-X серий MVXZ и SRX.

Также мы можем рекомендовать высококачественные цепи следующих производителей: SUNSTAR, RK, Pro Taper, ProX, AFAM и некоторых других.

Передаточное число [I]

Передаточное число редуктора рассчитывается по формуле:

I = N1/N2

где N1 – скорость вращения вала (количество об/мин) на входе; N2 – скорость вращения вала (количество об/мин) на выходе.

Полученное при расчетах значение округляется до значения, указанного в технических характеристиках конкретного типа редукторов.

Таблица 2. Диапазон передаточных чисел для разных типов редукторов

Тип редуктора Передаточные числа
Червячный одноступенчатый 8-80
Червячный двухступенчатый 25-10000
Цилиндрический одноступенчатый 2-6,3
Цилиндрический двухступенчатый 8-50
Цилиндрический трехступенчатый 31,5-200
Коническо-цилиндрический одноступенчатый 6,3-28
Коническо-цилиндрический двухступенчатый 28-180

ВАЖНО! Скорость вращения вала электродвигателя и, соответственно, входного вала редуктора не может превышать 1500 об/мин. Правило действует для любых типов редукторов, кроме цилиндрических соосных со скоростью вращения до 3000 об/мин

Этот технический параметр производители указывают в сводных характеристиках электрических двигателей.

Цепи D.I.D

Номером один в нашем списке по праву стоит компания DAIDO KOGYO CO с торговой маркой D.I.D – самый крупный из мировых лидеров по производству цепей, основанный в 1933 году. Сам же бренд D.I.D появился на рынке в 1937 году. Цепи D.I.D проверены временем – это надежность и настоящее японское качество. На ее счету множество инновационных решений, которые стали стандартом для других производителей. D.I.D – поставщик цепей на мотоциклетные заводы большой японской четверки: Honda, Yamaha, Kawasaki и Suzuki, а также на многие европейские и американские, как КТМ, Ducati, BMW, Harley Davidson и другие. Компания широко представлена в спорте и поддерживает профессиональные команды практически во всех видах мотоспорта: мотокроссе, эндуро, триале, супермото, шоссейно-кольцевых мотогонках, ралли Дакар, а также в квадроспорте и картинге. Ну, а нас в первую очередь интересует, что предлагает нам этот производитель для таких дисциплин, как мотокросс и эндуро.

Для мотокросса D.I.D предлагает пять моделей цепей – 420NZ3, 428NZ, 520DZ2, 520ERT2 и 520MX. Флагман линейки и выбор чемпионов – цепь D.I.D 520ERT2. Это стандартная цепь O-Ring усиленной конструкции с очень высокой прочностью при растяжении, рекомендованная для объема двигателя до 450сс. Ее основные преимущества – легкий вес, высокая износостойкость и длительный срок эксплуатации. Отметим, что все цепи для мотокросса произведены с применением эксклюзивной технологии обработки SDH, при которой формируется чрезвычайно твердый слой карбида хрома на поверхности штифтов, сохраняя при этом мягкое внутреннее ядро. Этот слой стоек к жидкостям и истиранию.

В линейке присутствуют еще две кроссовых модели – это 520DZ2 и 520MX. 520DZ2 рекомендована для мотоциклов с объемом двигателей до 450сс, а 520MX объемом до 500сс и по сравнению с 520ERT2 используется в наиболее тяжелых условиях (песок, вода и грязь). Также две модели для мини-мотоциклов 420NZ3 – рекомендована для объема двигателя 150сс, а 428NZ для 100сс.

Теперь рассмотрим цепи для эндуро и различных гонок на пересеченной местности и пустыне, где предпочтительна герметичность и высокая эффективность с низким коэффициентом трения. Тут D.I.D нам рекомендует такие модели цепей с сальниками X-Ring. Цепь 520VT2 рекомендована для двигателей объемом до 500сс и главное ее достоинство малый коэффициент трения и высокая износостойкость. Модели 520ERV3 и 520VX2 рекомендованы для двигателей до 750сс. Причем цепь 520ERV3 рассчитанная для гонок в условиях пустыни, на 5% устойчивее к растяжению, с повышенной износостойкостью на 15% и соответственно дольше служит.

Заключение

Рассмотрев различные примеры передаточных чисел редукторов автомобилей как отечественного, так и зарубежного производства, можно сделать несколько выводов. В первую очередь стало понятно, что передаточное число – важный параметр, характеризующий динамические и мощностные характеристики автомобиля. Зная только эту величину, можно понять, что собой представляет автомобиль в целом. Кроме этого, видно, насколько разнообразны редукторы даже на отечественных автомобилях.

В редуктор переднего/заднего моста автомобилей семейства НИВА можно установить любую главную передачу (пару) не зависимо от модели автомобиля. Чем больше передаточное число главной пары, тем, соответственно , больше мощность редуктора. Напротив, чем меньше передаточное число главной пары, тем редуктор является наиболее скоростным. Самыми лучшими мощностными характеристиками обладает редуктор ВАЗ 2102. В отношении полноприводных моделей ВАЗов справедливо правило: при ремонте редуктора (переднего или заднего в отдельности), необходимо обеспечить совпадение передаточных чисел у главных передач обоих редукторов. Несоблюдение данного правила неминуемо приведет к поломке зубьев шестерен главной передачи у одного или обоих редукторов сразу же после начала движения.

Главная пара Передаточное число кол-во зубьев на шестернях число оборотов карданного вала на 10 оборотов колеса
на ведомой на ведущей
2101 4,3 43 10 21,5
2102 4,44 40 9 22,2
2103 4,1 41 10 20,5
2106 3,9 43 11 19,5

Если Вы не знаете, какая именно главная пара и с каким передаточным числом установлена в редукторе Вашего автомобиля, можно воспользоваться получением необходимых данных следующим способом (нижеописанную операцию лучше производить с помощником):

Вывешивается одно заднее колесо автомобиля и устанавливаем его (автомобиль) на надежные подставки. Устанавливаем рычаг переключения передач в нейтральное положение так же как ираздатку и полностью отпускаем ручной тормоз, обеспечив, тем самым, свободное вращение колеса.

Вращаем поднятое колесо, считая при этом его обороты и обороты карданного вала. Для получения наиболее точных данных необходимо сделать 10 оборотов колеса. Подсчитав обороты колеса и карданного вала, используя приведенную выше таблицу, определяем передаточное число редуктора и, соответственно, модель главной пары. Если при ремонте в редуктор будет установлена не родная главная пара, с иным передаточным числом, то при движении изменятся показания спидометра (скорость и пройденный автомобилем путь).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector