Как найти скорость, формула
Содержание:
Взаимосвязь скорости, времени, расстояния
Скорость, время и расстояние связаны между собой очень крепко. Одно без другого даже сложно представить.
Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время: s = v × t.
Задачка 1. Мы вышли из дома и направились в гости в соседний двор. Мы дошли до соседнего двора за 15 минут. Фитнес браслет показал, что наша скорость была 50 метров в минуту. Какое расстояние мы прошли?
Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Умножив 50 метров на 15, мы определим расстояние от дома до магазина:
s = v × t = 50 × 15 = 750
Ответ: мы прошли 750 метров.
Если известно время и расстояние, то можно найти скорость: v = s : t.
Задачка 2. Двое школьников решили проверить, кто быстрее добежит от двора до спортплощадки. Расстояние от двора до магазина с мороженым 100 метров. Первый школьник добежал за 25 секунд. Второй за 50 секунд. Кто добежал быстрее?
Быстрее добежал тот, кто за 1 секунду пробежал большее расстояние. Говорят, что у него скорость движения больше. В этой задаче скорость школьников это расстояние, которое они пробегают за 1 секунду.
Чтобы найти скорость, нужно расстояние разделить на время движения. Найдем скорость первого школьника: для этого разделим 100 метров на время движения первого школьника, то есть на 25 секунд:
Если расстояние дано в метрах, а время движения в секундах, то скорость измеряется в метрах в секунду (м/с). Если расстояние дано в километрах, а время движения в часах, скорость измеряется в километрах в час (км/ч).
В нашей задаче расстояние дано в метрах, а время в секундах. Значит будем измерять скорость в метрах в секунду (м/с).
100 м : 25 с = 4 м/с
Так мы узнали, что скорость движения первого школьника 4 метра в секунду.
Теперь найдем скорость движения второго школьника. Для этого разделим расстояние на время движения второго школьника, то есть на 50 секунд:
Значит скорость движения второго школьника составляет 2 метра в секунду.
Сейчас можно сравнить скорости движения каждого школьника и узнать, кто добежал быстрее.
Скорость первого школьника больше. Значит он добежал до магазина с мороженым быстрее.
Ответ: первый школьник добежал быстрее.
Если известна скорость и расстояние, то можно найти время: t = s : v.
Задачка 3. От школы до стадиона 500 метров. Мы должны дойти до него пешком. Наша скорость будет 100 метров в минуту. За какое время мы дойдем до стадиона из школы?
Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?
Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до стадиона:
t = s : v = 500 : 100 = 5
Ответ: от школы до стадиона мы дойдем за 5 минут.
Специально для уроков математики можно распечатать или нарисовать самостоятельно такую таблицу, чтобы быстрее запомнить и применять формулы скорости, времени, расстояния.
Еще больше практики — в детской онлайн-школе Skysmart. Ученики решают примеры на интерактивной платформе: в игровом формате и с мгновенной автоматической проверкой. А еще отслеживают прогресс в личном кабинете и вдохновляются на новые свершения.
Запишите ребенка на бесплатный вводный урок математики: покажем, как все устроено и наметим индивидуальную программу, чтобы ребенок лучше учился в школе и не боялся контрольных.
Давайте школьный урок физики превратим в увлекательную игру! В этой статье нашей героиней станет формула «Скорость, время, расстояние». Разберем отдельно каждый параметр, приведем интересные примеры.
Шаги
Метод 1 из 2:
Часть 1: Определение средней скорости изменения функции
-
1
Функция. Это соответствие между переменными величинами, в котором каждому значению некоторой независимой переменной «x» соответствует определенное значение зависимой переменной «у».
-
2
Переменная. Это величина, в процессе своего изменения принимающая различные значения. Переменные, как правило, обозначаются через «х» и «у».
-
3
Угловой коэффициент. Он равен тангенсу угла между положительным направлением оси абсцисс и данной прямой линией. Угловой коэффициент характеризует скорость изменения линейной функции.
-
4
Секущая. Это прямая, пересекающая две или более точки, лежащих на кривой. При вычислении средней скорости изменения функции вы находите угловой коэффициент секущей между двумя заданными точками.
-
5
Основная формула для вычисления средней скорости изменения функции показана на рисунке.
Метод 2 из 2:
Часть 2: Вычисление средней скорости изменения функции
-
1
Найдите f(x + h).
Вычислите f(x + h), используя следующее выражение: f(x + h) = (х + h)^2 = x^2 + 2xh + h^2.
В исходной функции f(x) замените «х» на «x + h», где h – приращение аргумента (то есть изменение независимой переменной «х»).Например, дана функция f(х) = x^2. Вычислите среднюю скорость изменения функции между в интервале (2,5) (то есть х1 = 2 и х2 = 5).
-
2
Вычислите среднюю скорость изменения, воспользовавшись основной формулой и подставив в нее исходную функцию f(x) и преобразованную функцию f(x+h).
В приведенном выше примере вычисления показаны на рисунке.
WH.shared.addScrollLoadItem(‘cc51182fbff452ca00cb398923769107’){«smallUrl»:»https:\/\/www.wikihow.com\/images_en\/thumb\/e\/e7\/Screen-Shot-2014-03-11-at-5.00.07-PM.png\/460px-Screen-Shot-2014-03-11-at-5.00.07-PM.png»,»bigUrl»:»https:\/\/www.wikihow.com\/images\/thumb\/e\/e7\/Screen-Shot-2014-03-11-at-5.00.07-PM.png\/728px-Screen-Shot-2014-03-11-at-5.00.07-PM.png»,»smallWidth»:460,»smallHeight»:111,»bigWidth»:728,»bigHeight»:176,»licensing»:»
«}
-
3
Найдите h.
В приведенном выше примере: h = x2 — x1 = 5 — 2 = 3.
Для этого вычтите начальное значение переменной «х» из ее конечного значения. Другими словами, если интервал задается в виде (x1, x2), то h = x2 — x1.
-
4
Вычислите среднюю скорость изменения.
В приведенном выше примере: А(х) = 2х + h = 2 × 2 + 3 = 7
Поставьте найденное значение h в выведенную выше формулу (вместо «х» подставьте значение x1).
-
5
Запишите ответ. В нашем примере средняя скорость изменения функции равна 7.
Формула скорости математика 4 класс
С какой скоростью черепах ползла после камня, если она проползла 33 см?
3. Поезд шёл до станции 7 ч со скоростью 63 км/ч, а после станции поезд проехал ещё 4 ч. С какой скоростью поезд проедет путь от станции, если всего он прошёл 741 км?
Составные задачи на расстояние.
Образец:
Травоядный динозавр сначала бежал 3 ч со скоростью 6 км/ч, а потом он бежал ещё 4 ч со скоростью 5 км/ч. Какое расстояние пробежал травоядный динозавр?
Рассуждаем так. Это задача в одном направлении.
Составим таблицу.
Слова « скорость », «время», «расстояние» запишем зеленой ручкой.
Скорость (V) Время (t) Расстояние (S)
С. — 6 км/ч Зч? км
П. — 5 км/ч 4ч?км? км
Составим план решения этой задачи. Чтобы узнать какое расстояние пробежал динозавр, надо знать, какое расстояние он пробежал, потом и какое расстояние он пробежал сначала.
S Sп Sс
Чтобы найти расстояние, надо скорость умножить на время.
Sс =Vс t с
6· 3 = 18 (км) — расстояние, которое пробежал динозавр сначала. Чтобы найти расстояние, надо скорость умножить на время.
Sп = Vп tп
5 4 = 20 (км) — расстояние, которое пробежал динозавр потом.
18 + 20 = 38 (км)
Составим выражение:6 3 + 5 4 = 38(км)
Ответ: 38 км пробежал травоядный динозавр.
Реши задачу.
1. Ракета сначала летела 28 с со скоростью 15 км/с, а оставшийся путь летела 53 с со скоростью 16 км/с. Какое расстояние пролетела ракета?
2. Утка сначала плыла 3 ч со, скоростью 19 км/ч, а потом она плыла ещё 2 ч со скоростью 17 км/ч. Какое расстояние проплыла утка?
3. Кит полосатик сначала плыл 2 ч со скоростью 22 км/ч, а потом он плыл ещё 2 ч со скоростью 43 км/ч. Какое расстояние проплыл кит полосатик?
4. Теплоход до пристани шёл 3 ч со скоростью 28 км/ч, а после пристани плыл ещё 2 ч со скоростью 32 км/ч. Какое расстояние проплыл теплоход?
Задачи на нахождение времени совместной работы.
Образец:
Привезли 240 саженцев елей. Первый лесник может посадить эти ели за 4 дня, а второй за 12 дней. За сколько дней оба лесника могут выполнить задание, работая вместе?
240: 4 = 60 (саж,) за 1 день сажает первый лесник.
240: 12 — 20 (саж.) за 1 день сажает второй лесник.
60 + 20 = 80 (саж.) за 1 день сажают оба лесника. 240:80 = 3(дн.)
Ответ: за 3 дня лесники посадят саженцы, работая вместе.
Реши задачу.
1. В мастерской 140 мониторов. Один мастер отремонтирует их за 70 дней, а другой, за 28 дней. За сколько дней оба мастера отремонтируют эти мониторы, если будут работать вместе?
2. Было 600 кг горючего. Один трактор израсходовал его за 6 дней, а другой – за 3 дня. За сколько дней тракторы израсходуют это горючее, работая вместе?
3. Надо перевезти 150 пассажиров. Один катер перевезёт их за 15 рейсов, а другой за 10 рейсов. За сколько рейсов эти катера перевезу всех пассажиров, работая вместе?
4. Один ученик может сделать 120 снежинок 60 мин, а другой — за 30 мин. Сколько потребуется времени ученикам, если они будут работать вместе?
5. Один мастер может изготовить 90 шайбочек за 30 мин, другой—‘за 15 мин. За какое время они изготовят 90 шайбочек при совместной работе?
⇐ Предыдущая234567891011
Движение по вертикали
Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).
Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.
И кому же верить?
Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8
м/с2.
Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.
Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.
Примеров механического движения в жизни — масса. Узнайте больше у преподавателей онлайн-школы Skysmart. Каждый урок по физике — это новый эксперимент: интерактивный, живой и очень увлекательный.
Приходите на бесплатный вводный урок и начните заниматься физикой в удовольствие уже завтра!
Для чего это нужно?
Такие расчеты полезны всем. Мы все время планируем свой день и перемещения. Имея дачу за городом, есть смысл узнать среднюю путевую скорость при поездках туда.
Это упростит планирование проведения выходных. Научившись находить эту величину, мы сможем быть более пунктуальными, перестанем опаздывать.
Вернемся к примеру, предложенному в самом начале, когда часть пути автомобиль проехал с одной скоростью, а другую — с иной. Такой вид задач очень часто используется в школьной программе. Поэтому, когда ваш ребенок попросит вас помочь ему с решением подобного вопроса, вам будет просто это сделать.
Сложив длины участков пути, вы получите общее расстояние. Поделив же их значения на указанные в исходных данных скорости, можно определить время, потраченное на каждый из участков. Сложив их, получим время, потраченное на весь путь.
Задачи на среднюю скорость (далее СК). Мы уже рассматривали задания на прямолинейное движение. Рекомендую посмотреть статьи » » и » » . Типовые задания на среднюю скорость это группа задач на движение, они включены в ЕГЭ по математике и такая задача вполне вероятно может оказаться перед вами в момент самого экзамена. Задачки простые, решаются быстро.
Смысл таков: представьте объект передвижения, например автомобиль. Он проходит определённые участки пути с разной скоростью. На весь путь затрачивается какое-то определённое время. Так вот: средняя скорость это такая постоянная скорость с которой автомобиль преодолел бы данный весть путь за это же время То есть формула средней скорости такова:
Если участков пути было два, тогда
Если три, то соответственно:
*В знаменателе суммируем время, а в числителе расстояния пройденные за соответствующие им отрезки времени.
Первую треть трассы автомобиль ехал со скоростью 90 км/ч, вторую треть – со скоростью 60 км/ч, а последнюю – со скоростью 45 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Как уже сказано необходимо весь путь разделить на всё время движения. В условии сказано о трёх участках пути. Формула:
Обозначим весь пусть S. Тогда первую треть пути автомобиль ехал:
Вторую треть пути автомобиль ехал:
Последнюю треть пути автомобиль ехал:
Таким образом
Решите самостоятельно:
Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть – со скоростью 120 км/ч, а последнюю – со скоростью 110 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Первый час автомобиль ехал со скоростью 100 км/ч, следующие два часа – со скоростью 90 км/ч, а затем два часа – со скоростью 80 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.
В условии сказано о трёх участках пути. СК будем искать по формуле:
Участки пути нам не даны, но мы можем без труда их вычислить:
Первый участок пути составил 1∙100 = 100 километров.
Второй участок пути составил 2∙90 = 180 километров.
Третий участок пути составил 2∙80 = 160 километров.
Вычисляем скорость:
Решите самостоятельно:
Первые два часа автомобиль ехал со скоростью 50 км/ч, следующий час – со скоростью 100 км/ч, а затем два часа – со скоростью 75 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Первые 120 км автомобиль ехал со скоростью 60 км/ч, следующие 120 км — со скоростью 80 км/ч, а затем 150 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Сказано о трёх участках пути. Формула:
Протяжённость участков дана. Определим время, которое автомобиль затратил на каждый участок: на первый затрачено 120/60 часов, на второй участок 120/80 часов, на третий 150/100 часов. Вычисляем скорость:
Решите самостоятельно:
Первые 190 км автомобиль ехал со скоростью 50 км/ч, следующие 180 км — со скоростью 90 км/ч, а затем 170 км — со скоростью 100 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени – со скоростью 66 км/ч. Найдите СК автомобиля на протяжении всего пути. Ответ дайте в км/ч.
Путешественник переплыл море на яхте со средней скоростью 17 км/ч. Обратно он летел на спортивном самолете со скоростью 323 км/ч. Найдите среднюю скорость путешественника на протяжении всего пути. Ответ дайте в км/ч.
Взаимосвязь скорости, времени, расстояния
Скорость принято обозначать маленькой латинской буквой v, время движения – маленькой буквой t, пройденное расстояние – маленькой буквой s. Скорость, время и расстояние связаны между собой.
Если известны скорость и время движения, то можно найти расстояние. Оно равно скорости, умноженной на время:
s = v × t
Например, мы вышли из дома и направились в магазин. Мы дошли до магазина за 10 минут. Наша скорость была 50 метров в минуту. Зная свою скорость и время, мы можем найти расстояние.
Если за одну минуту мы прошли 50 метров, то сколько таких пятьдесят метров мы пройдем за 10 минут? Очевидно, что умножив 50 метров на 10, мы определим расстояние от дома до магазина:
v = 50 (м/мин)
t = 10 минут
s = v × t = 50 × 10 = 500 (метров до магазина)
Если известно время и расстояние, то можно найти скорость:
v = s : t
Например, расстояние от дома до школы 900 метров. Школьник дошел до этой школы за 10 минут. Какова была его скорость?
Скорость движения школьника это расстояние, которое он проходит за одну минуту. Если за 10 минут он преодолел 900 метров, то какое расстояние он преодолевал за одну минуту?
Чтобы ответить на этот, нужно разделить расстояние на время движения школьника:
s = 900 метров
t = 10 минут
v = s : t = 900 : 10 = 90 (м/мин)
Если известна скорость и расстояние, то можно найти время:
t = s : v
Например, от дома до спортивной секции 500 метров. Мы должны дойти до неё пешком. Наша скорость будет 100 метров в минуту (100 м/мин). За какое время мы дойдем до спортивной секции?
Если за одну минуту мы будем проходить 100 метров, то сколько таких минут со ста метрами будет в 500 метрах?
Чтобы ответить на этот вопрос нужно 500 метров разделить на расстояние, которое мы будем проходить за одну минуту, то есть на 100. Тогда мы получим время, за которое мы дойдем до спортивной секции:
s = 500 метров
v = 100 (м/мин)
t = s : v = 500 : 100 = 5 (минут до спортивной секции)
Понравился урок? Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Онлайн калькулятор
Скорость передачи данных
Объём данных (размер файла) I = битбайткилобит (Kбит)кибибит (Кибит)килобайт (Кбайт)кибибайт (КиБ)мегабит (Мбит)мебибит (Мибит)мегабайт (Мбайт)мебибайт (МиБ)гигабит (Гбит)гибибит (Гибит)гигабайт (Гбайт)гибибайт (ГиБ)терабит (Тбит)тебибит (Тибит)терабайт (Тбайт)тебибайт (ТиБ)Время передачи данных t = секминчассуткигодСкорость передачи данных V =
бит в секунду (бит/с)байт в секунду (Б/с)килобит в секунду (Kбит/с)кибибит в секунду (Кибит/с)килобайт в секунду (Кбайт/с)кибибайт в секунду (КиБ/с)мегабит в секунду (Мбит/с)мебибит в секунду (Мибит/с)мегабайт в секунду (Мбайт/с)мебибайт в секунду (МиБ/с)гигабит в секунду (Гбит/с)гибибит в секунду (Гибит/с)гигабайт в секунду (Гбайт/с)гибибайт в секунду (ГиБ/с)терабит в секунду (Тбит/с)тебибит в секунду (Тибит/с)терабайт в секунду (Тбайт/с)тебибайт в секунду (ТиБ/с)Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Объём данных
Скорость передачи данных V = бит в секунду (бит/с)байт в секунду (Б/с)килобит в секунду (Kбит/с)кибибит в секунду (Кибит/с)килобайт в секунду (Кбайт/с)кибибайт в секунду (КиБ/с)мегабит в секунду (Мбит/с)мебибит в секунду (Мибит/с)мегабайт в секунду (Мбайт/с)мебибайт в секунду (МиБ/с)гигабит в секунду (Гбит/с)гибибит в секунду (Гибит/с)гигабайт в секунду (Гбайт/с)гибибайт в секунду (ГиБ/с)терабит в секунду (Тбит/с)тебибит в секунду (Тибит/с)терабайт в секунду (Тбайт/с)тебибайт в секунду (ТиБ/с)Время передачи данных t = секминчассуткигодОбъём данных (размер файла) I =
битбайткилобит (Kбит)кибибит (Кибит)килобайт (Кбайт)кибибайт (КиБ)мегабит (Мбит)мебибит (Мибит)мегабайт (Мбайт)мебибайт (МиБ)гигабит (Гбит)гибибит (Гибит)гигабайт (Гбайт)гибибайт (ГиБ)терабит (Тбит)тебибит (Тибит)терабайт (Тбайт)тебибайт (ТиБ)Округление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Время передачи данных
Объём данных (размер файла) I = битбайткилобит (Kбит)кибибит (Кибит)килобайт (Кбайт)кибибайт (КиБ)мегабит (Мбит)мебибит (Мибит)мегабайт (Мбайт)мебибайт (МиБ)гигабит (Гбит)гибибит (Гибит)гигабайт (Гбайт)гибибайт (ГиБ)терабит (Тбит)тебибит (Тибит)терабайт (Тбайт)тебибайт (ТиБ)Скорость передачи данных V = бит в секунду (бит/с)байт в секунду (Б/с)килобит в секунду (Kбит/с)кибибит в секунду (Кибит/с)килобайт в секунду (Кбайт/с)кибибайт в секунду (КиБ/с)мегабит в секунду (Мбит/с)мебибит в секунду (Мибит/с)мегабайт в секунду (Мбайт/с)мебибайт в секунду (МиБ/с)гигабит в секунду (Гбит/с)гибибит в секунду (Гибит/с)гигабайт в секунду (Гбайт/с)гибибайт в секунду (ГиБ/с)терабит в секунду (Тбит/с)тебибит в секунду (Тибит/с)терабайт в секунду (Тбайт/с)тебибайт в секунду (ТиБ/с)Время передачи данных t =
секминчассуткигодОкругление ответа: до целогодо десятыхдо сотыхдо тысячныхдо 4 знаковдо 5 знаковдо 6 знаковдо 7 знаковдо 8 знаковдо 9 знаковдо 10 знаковбез округления*
Где упоминается скорость тела?
На самом деле, в реальном мире мы сталкиваемся со скоростью ежесекундно. Если так подумать, на Земле постоянно что-то да находится в движении. Вы можете попробовать возразить, ограничившись, например, пределами своей комнаты. То есть, по мнению некоторых людей, ночью в комнате ничего не движется. Кровати, шкафы, стулья, стол и прочие предметы находятся на своих местах, в то время как сам человек спит, то есть не движется.
Следовательно, скорость любого элемента данной системы (комнаты, как мы условились считать) равна нулю. Да, в этом что-то есть, и с одной стороны, человек, выдвинувший такое предположение, мог оказаться правым. Но не следует забывать о том, что своеобразную систему представляет собой сама наша планета Земля, а не только предметы, которые на ней находятся. А ведь все мы знаем, что ежесекундно Земля вращается вокруг своей оси. В этой системе отсчета все тела, находящиеся в пределах планеты, также совершают движение. Поэтому говорить о том, что предмет, который, казалось бы, не двигается, находится в абсолютном покое, нельзя. Это первое, что нужно было бы сказать о скорости тела.
С детской скамьи мы учимся решать много задач не только физического, но и математического характера. Их в настоящее время не так много, и ставка делается больше на гуманитарные дисциплины наподобие иностранного языка, хотя они не должны преподаваться в ущерб родному языку и техническим дисциплинам. Но речь немного не об этом. Так вот, понятие скорости тела мы можем встретить не только в задачах по физике, хотя там она встречается, пожалуй, наиболее часто. Несколько реже, но все же фигурирует скорость тела и в задачах по математике.
Наверняка все помнят эти до ужаса ненавистные (в большинстве случаев) задачи, в которых требовалось найти, через сколько времени встретятся два автомобиля, если они движутся с такими-то скоростями. Условия при этом могут быть самые разные. То движение происходит по круговой траектории (спортсмены на велосипедах или мотоциклах), то по прямолинейной траектории. В общем, задач множество. И как бы там ни было, а наша задача заключается в том, чтобы понять, что нужно делать, столкнувшись с вопросом о том, как найти скорость в том или ином случае.
Примеры решения задач
Задание. Движение материальной точки А задано уравнением: $x=2 t^-4 t^$ . Точка начала свое движение при t=0 c.Как будет двигаться рассматриваемая точка по отношению к оси X в момент времени t=0,5 с.
Решение. Найдем уравнение, которое будет задавать скорость рассматриваемой материальной точки, для этого от функции x=x(t), которая задана в условиях задачи, возьмем первую производную по времени, получим:
Для определения направления движения подставим в полученную нами функцию для скорости v=v(t) в (1.1) указанный в условии момент времении сравним результат с нулем:
Так как мы получили, что скорость в указанный момент времени отрицательна, следовательно, материальная точка движется против оси X.
Ответ. Против оси X.
Формула скорости не по зубам? Тебе ответит эксперт через 10 минут!
Задание. Скорость материальной точки является функцией от времени вида:
где скорость в м/с, время в c. Какова координата точки в момент времени равный 10 с, в какой момент времени точка будет на расстоянии 10 м от начала координат? Считайте, что при t=0 c точка началадвижение из начала координат по оси X.
Решение. Точка движется по оси X, cвязь координаты x и скорости движения определена формулой:
Для ответа на первый вопрос задачи подставим в выражение (2.1) время t=10 c, имеем:
Для того чтобы определить в какой момент времени точка будет находиться на расстоянии 10 м от начала координат приравняем выражение (2.1) к 10 и решим, полученное квадратное уравнение:
$$ \begin10 t-t^=10(2.2) \\ t_=5+\sqrt \approx 8,8(c) ; t_=5-\sqrt \approx 1,13(c) \end $$
Рассмотрим второй вариант нахождения точки на расстоянии 10 м от начала координат, когда x=-10. Решим квадратное уравнение:
При решении уравнения (2.3) нам подойдет корень равный:
Ответ. 1) $x=0 \mathrm
m>$ 2) $t_=8,8 \mathrm, t_=1,13 c, t_=11 c$
Класс: 4
Цели:
- закрепить знания нахождения скорости, времени, расстояния;
- ввести формулы;
- учиться решать задачи с этими величинами по формулам и без них;
- развивать мышление и память;
- прививать любовь к математике.
1. Организация учащихся.
2. Сообщение темы.
— Сегодня на уроке мы закрепим знания нахождения скорости, времени, расстояния. Будем учиться решать задачи с помощью формул.
— А работать мы будем в форме соревнований трех команд:
- 1 ряд — автомобилисты
- 2 ряд — летчики
- 3 ряд — мотоциклисты
— Баллы будем выставлять на доске
3. Соотнести записи с картинкой.
— Как вы думаете, что написано на доске? (Скорости)
— Соотнесите их с нужной картинкой.
(12 км/ч, 60 км/ч, 5 км/ч, 70 км/ч, 120 км/ч, 800 км/ч, 8 км/с, 50 км/ч,250 км/ч.
Автобус, самолет, ракета, пешеход, поезд, велосипедист , автомобиль, пароход, мотоциклист) Каждая команда выставляет по 3 ученика.
— Как вы понимаете км/сек, км/ч, м/мин.
а) В тетрадь записываете ответ с наименованием.
Таблица на интерактивной доске.
Средняя скорость — движение — автомобиль
Средняя скорость движения автомобиля зависит от максимальной скорости, которую он может развить на дорогах различного качества, и от интенсивности разгона. Кроме того, на среднюю скорость автомобиля существенное влияние оказывают его тормозные свойства.
Средние скорости движения автомобилей приведены для дорог с усовершенствованным типом покрытия в хорошем состоянии.
Средняя скорость движения автомобиля составляет v км / час.
Средняя скорость движения автомобиля зависит от многих факторов: на нее влияют, с одной стороны, конструктивные особенности автомобиля, а с другой — дорожные условия. При испытаниях ее стремятся поддерживать максимально возможной. Чтобы полнее выяснить причины, вызывающие ограничение скорости, принято определять среднюю скорость чистого движения и среднюю техническую скорость.
Стремление повысить среднюю скорость движения автомобилей ( автопоездов) при одновременном увеличении их полной массы приводит к повышению мощности двигателя, что, в свою очередь, вызывает повышенные требования к трансмиссии автомобиля. Это непосредственно относится и к ведущему мосту, назначение которого состоит в изменении крутящего момента двигателя при передаче его к ведущим колесам таким образом, чтобы вместе с коробкой передач обеспечить согласование скоростной характеристики двигателя с динамической характеристикой автомобиля.
График, для определения нагрузочного режима трансмиссии автомобиля ( по нормали. |
Угловую скорость рассчитываемых подшипников определяют по средней скорости движения автомобиля аа ср — с учетом соответствующего передаточного числа между валами коробки передач.
Эффективность действия тормозов оказывает влияние на среднюю скорость движения автомобиля, особенно в условиях городского движения.
Именно эта скорость имеется в виду, когда, например, говорят о средней скорости движения автомобиля или средней скорости поезда.
За эквивалентное число оборотов пэкв принимается число оборотов подшипника ( вала), соответствующее средней скорости движения автомобиля на основной ( прямой) передаче.
Установка на шасси автомобиля двигателя повышенной мощности, ранее практиковавшаяся в Америке, повышала среднюю скорость движения автомобиля, уменьшала его износы и шумность работы, но ухудшала топливную экономичность. Последнее объясняется тем, что в двигателях большей мощности и большого рабочего объема при работе на малых нагрузках возрастает относительная величина тепловых, насосных и механических потерь.
Расстояние между площадками для кратковременных остановок и стоянок автомобилей зависит от интенсивности движения на дороге, средней скорости движения автомобилей, вместимости стоянки и средней продолжительности пребывания автомобиля на стоянке.
Зависимость коэффициента сцепления от различных факторов. |
В практике управления автомобилем важно знать н только максимальную скорость движения автомобиля на отдельных участках маршрута, но и среднюю скорость на всем маршруте. Возможность определения средней скорости движения автомобиля имеет практическое значение для осуществления планирования перевозок грузов и пассажиров на автомобильном транспорте.
Из выражения ( 34) следует, что чем выше удельная мощность, тем больше ускорение разгона и меньше продолжительность этапа разгона до установившейся скорости
В итоге следует ожидать повышения средней скорости движения автомобиля. Для того чтобы оценить степень влияния удельной мощности на среднюю скорость вследствие сокращения именно этого этапа цикла, рассмотрим процесс разгона автомобиля с учетом переключения передач.
Из выражения ( 34) следует, что чем выше удельная мощность, тем больше ускорение разгона и меньше продолжительность этапа разгона до установившейся скорости. В итоге следует ожидать повышения средней скорости движения автомобиля. Для того чтобы оценить степень влияния удельной мощности на среднюю скорость вследствие сокращения именно этого этапа цикла, рассмотрим процесс разгона автомобиля с учетом переключения передач.