Редуктор заднего моста

Ремонт редуктора

Несложный ремонт червячного редуктора можно осуществить собственными силами. Если мотор и привод объединены в одном корпусе, то следует аккуратно разобрать механизм.

Часть общего картера, в которой находится привод, также подлежит разбору.  Если конструкция червячного привода изготовлена под высокоскоростной мотор, то, прежде чем приступать к разбору редуктора, необходимо слить трансмиссионное масло из корпуса.

В редукторе этого типа применяются высококачественные подшипники, поэтому наиболее часто необходимость ремонте возникает если шестерня и червяк изношены свыше предельных значений. Рабочая пара всегда подлежит одновременной замене на полный ремкомплект, который прежде чем поступить в торговую сеть, должен быть правильно подобран и испытан на специальном стенде.

Конструкция червячного редуктора также позволяет осуществить регулировку зацепления шестерни с червяком без разбора корпуса. Для этой цели используется болт, который встроен  в корпус. Если имеется чертёж устройства, то можно без труда определить, где шестерня регулируется. Если чертёж отсутствует, то косвенным признаком регулировочного болта, будет наличие на нём контргайки, которая используется для фиксации отрегулированного зазора между червяком и зубчатым колесом. Крайне редко подшипники редуктора требуют замены. Обычно привод оснащается качественными шарикоподшипниками, которые не требуют замены или ремонта в течение всего эксплуатационного срока детали. Подшипники могут быть испорчены только в том случае, когда привод долгое время использовался без смазки или с применением некачественных смазочных материалов.

Устройство и принцип работы

Рассматриваемый механизм представлен классическим сочетанием шестерен с различным диаметром, которые обеспечивают передачу вращения с изменением числа оборотов и передаваемого усилия. Особенности механизма определяют возможность применения в самых различных отраслях. Обеспечить работу можно только в случае присоединения вращающего вала к ведомой части.

Рассматривая чертеж классического устройства, следует отметить, что оно состоит из следующих элементов:

Основные элементы представлены зубчатыми и червячными парами.
Для установки и фиксации основных деталей проводится установка центрирующих подшипников.
Для смазывания трущихся деталей корпус заполняется специальным маслом

Исключить вероятность его вытекания можно за счет уплотнений.
Сальники также являются важной частью конструкции.
Корпус состоит из двух составных элементов, за счет которых есть возможность разобрать конструкция при обслуживании или ремонте.. Схема классического устройства выглядит следующим образом:

Схема классического устройства выглядит следующим образом:

  1. В качестве источника вращения устанавливается мотор.
  2. Другая часть представлена шестерней планетарного типа. Внутри расположены другие детали, крепление стакана редуктора к мотору проводится за счет фиксирующих элементов.
  3. Далее идет вал с подшипником.

Защита конструкции обеспечивается за счет крышки редуктора. Его фиксация проводится за счет болтов. В целом можно сказать, что устройство достаточно сложное, поэтому провести его ремонт и обслуживание не всегда просто.

Принцип действия агрегата во многом зависит от кинематической схемы привода. Расчет передаточного отношения проводится при применении специальных формул, которые можно встретить в технической литературе.

Основная часть конструкции состоит из следующих деталей:

  1. Коронной шестерни.
  2. Планетарная или сателлиты.
  3. Водило и солнечная шестерня.

Принцип действия рассчитывается следующим образом:

  1. Солнечная шестерня расположена в центральной части конструкции. Зачастую именно ей передается основное вращение, для чего элемент имеет посадочное отверстие под вал.
  2. Центральный элемент постоянно находится в зацеплении с другими подобными шестернями, оси которых расположены по окружности.
  3. Сателлиты находятся в зацеплении с коронной шестерней, которая представлена зубчатым колесом большого диаметра с внутренним расположением основных деталей.
  1. Водило требуется для жесткой фиксации всех деталей относительно друг друга.

Стоит учитывать, что для работы механизма одна из частей должна быть зафиксирована относительно других. В зависимости от выбора ведомого или ведущего элемента зависит показатель передаточного числа. Рассчитать число достаточно сложно, от этого показателя также зависит удельная мощность.

Конструктивные особенности рассматриваемого механизма определили то, что он может применяться для достижения самых различных целей.

Конструкция редукторов

[]

  • Мотор-колеса на транспортных машинах
  • Основные группы мотор-колес
  • Виды мотор-колес
  • Схема расчета мотор-колеса
  • Перегрузочная способность по моменту электродвигателей
  • Параметры электродвигателей
  • Параметры асинхронных двигателей
  • Показатели транспортной машины
  • Конструирование мотор-колес
  • Виды компоновки мотор-колес
  • Компоновки III и IV видов
  • Компоновки V и VI видов
  • Выбор вида компоновки мотор-колес
  • Факторы при выборе компоновки мотор-колес
  • Тяговые электродвигатели в мотор-колесах
  • Крепление электродвигателя
  • Сборка мотор-колеса
  • Рациональность конструкции мотор-колеса
  • Элементы мотор-колес
  • Конструкция редукторов
  • Функции редукторов
  • Двухступенчатые редукторы
  • Особенности редукторов
  • Двухскоростные мотор-колеса
  • Редуктор из планетарных передач
  • Мотор-колесо с переключаемым редуктором
  • Механизмы сцепления мотор-колес
  • Мотор-колесо с изменяемым передаточным числом
  • Механизм переключения передач мотор-колеса
  • Мотор-колесо с многодисковым механизмом сцепления
  • Уплотнения мотор-колес
  • Сальниковые уплотнения
  • Количество уплотнений
  • Конструкция механических тормозов мотор-колес
  • Пневматический привод с питанием от бортового компрессора
  • Тормоза планетарного ряда
  • Многодисковые тормоза
  • Охлаждение тяговых электродвигателей
  • Тепловой режим редукторов мотор-колес
  • Схема вентиляции мотор-колес с использованием патрубка
  • Благоприятные условия охлаждения
  • Вентиляция мотор-колес
  • Шины мотор-колес
  • Широкопрофильные крупногабаритные шины
  • Ободья мотор-колес
  • Подвески для мотор-колес
  • Применение электрического торможения
  • Электрическое торможение на электродвигателях
  • Реостатное торможение
  • Передаточные числа мотор-колес
  • Варианты кинематических схем
  • Свойства простых передач у редукторов мотор-колес
  • Проверка планетарной передачи по условиям сборки
  • Планетарный ряд
  • Нагрузочные режимы механической передачи
  • Расчет валов, шестерен и подшипников
  • Расчет механической передачи на выносливость
  • Выносливость деталей передачи
  • Расчет автомобильных валов
  • Зазор передачи
  • Тормозное звено
  • Вынужденные крутильные колебания
  • Резонансные зоны
  • Автоколебательные процессы
  • Динамические нагрузки в механической передаче
  • Эквивалентная схема мотор-колеса
  • Эквивалентные схемы мотор-колес

Редукторы мотор-колес транспортных машин в соответствии с назначением и необходимостью размещения полностью или частично внутри обода колеса должны обеспечивать:

  • необходимое передаточное число в соответствии с заданными тягово-скоростными показателями транспортной машины;
  • достаточно высокий к. п. д., позволяющий не только уменьшить расход топлива, но и упростить охлаждение редуктора;
  • минимальный осевой размер и вес, обусловленный размещением редуктора и электродвигателя в ограниченном монтажном объеме внутри обода колеса;
  • рациональную компоновку с другими элементами мотор-колеса;
  • простоту в изготовлении и ремонте, надежность в эксплуатации.

Влияние передаточного числа на конструкцию редуктора сказывается в том, что оно наряду с передаваемой мощностью определяет его размеры, и следовательно, возможность размещения внутри обода колеса. Передаточным числом определяется тип передачи редуктора или целесообразная комбинация типов передачи. От этого зависит возможность выполнения всех рядов редуктора с приблизительно одинаковым диаметральным размером, что позволяет наилучшим образом использовать монтажный объем внутри обода колеса, или возникает необходимость увеличения диаметрального размера одного ряда и размещения его вне обода.

По типу используемых передач редукторы мотор-колес могут быть с неподвижными осями валов, планетарными или комбинированными, т. е. состоящими как из планетарных передач, так и из передач с неподвижными осями валов. У подавляющего числа мотор-колес редукторы являются соосными, когда оси входного и выходного звена редуктора совпадают.

Редукторы с неподвижными осями делят на одно-, двух- и трехступенчатые в зависимости от числа ступеней зацепления. Планетарные редукторы в зависимости от числа планетарных рядов могут быть одно-, двух- и трехрядными.

Планетарные редукторы мотор-колес можно выполнять с одной или двумя параллельными кинематическими цепями. Выполнение редуктора с параллельными кинематическими цепями (при условии отсутствия циркулирующей мощности) способствует уменьшению веса и размеров редуктора.

С повышением числа ступеней или рядов редуктора увеличивается его передаточное число и осевой размер, но становится возможным использование быстроходных электродвигателей, обладающих меньшими габаритными размерами и удельным весом.

Виды мотор-редукторов

Сегодня разработано большое число вариантов мотор-редукторов, различающихся типом двигателя, принципом построения механической части и общей геометрией. Практически все возможные комбинации присутствуют в каталогах производителей.

По виду механического зацепления подразделяют цилиндрические, конические, червячные и планетарные модели. По взаимному расположению входного и выходного валов рассматривают соосные, параллельные и угловые варианты. Исходя из передаваемых мощностей выделяют модули обычного размера и мини мотор-редукторы. По типу присоединения к процессу, встречаются варианты с одно- и двухсторонним валом, а также с полым выходным валом.

Цилиндрические мотор-редукторы

Агрегаты, использующие классические цилиндрические редукторы получили большое распространение, благодаря простоте, надежности и универсальности механической части устройства. Их использование возможно в широком спектре оборудования. В зависимости от общей конструкции, цилиндрические мотор-редукторы выполняются с соосными или параллельными валами. Количество ступеней может варьироваться от одной до шести.

По способу расположения шестерен и общей компоновке выделяют горизонтальные и вертикальные модели. Такие устройства характеризуются высоким КПД, долговечностью и относительно невысокой стоимостью.  В отличие от многих других вариантов, цилиндрические редукторы обычно не допускают произвольного расположения в пространстве, что значительно ограничивает их область применения.

Конические мотор-редукторы

Устройства, собранные на основе конических шестерен, позволяют построить угловой конический мотор-редуктор. Его главной особенностью будет перпендикулярное расположение входного и выходного валов. Это ориентирует их на использование в устройствах, требующих смены направления осей. Также конические модели выгодно устанавливать в конструкциях, предъявляющих ограничение по одному из габаритных размеров устройства. Редукторы данного типа отличаются более высокой стоимостью, в виду значительной сложности изготовления отдельных деталей. Передаточное отношение конических моделей обычно невелико. Для его повышения, коническую и цилиндрическую передачи часто комбинируют, результатом чего становится коническо-цилиндрический мотор-редуктор.

Червячные модели

Сегодня, огромную популярность приобрели червячные одноступенчатые мотор-редукторы. В качестве механической передачи в них используется червячная пара. Она обеспечивает высокое передаточное отношение при сравнительно небольших габаритах. Благодаря этому стоимость червячных моделей ниже аналогов с иной конструкцией. Среди других особенностей следует выделить перпендикулярное расположение валов и самостоятельное затормаживание механизма при отсутствии внешнего поступления энергии.

В отличие от цилиндрических и конических моделей, приложение усилия к выходному валу не приведет к проворачиванию механизма. Благодаря этому такие редукторы часто используют в ответственных решениях и подъемно-транспортных устройствах. Червячные редукторы обычно не требовательны к положению установки. Благодаря герметичному корпусу их можно располагать произвольным образом, вследствие чего эти модели активно применяются для модернизации привода станков, промышленных линий и других механизмов. Среди недостатков червячных моделей обычно выделяют небольшой КПД и повышенное тепловыделение.

Планетарные и волновые мотор-редукторы

Благодаря компактности и высоким рабочим моментам, планетарные мотор-редукторы нашли широкое использование в небольших устройствах привода. Высокое передаточное отношение и способность работать с большими нагрузками, ориентирует их на использование совместно с серводвигателями промышленных роботов  и других автоматических устройств. Встречаются планетарные модели и общепромышленного применения. Благодаря особенностям конструкции зубчатой передачи, данные модели мотор-редукторов выполняются с соосными валами. Это позволяет их использовать для привода практически любых механизмов.

Дальнейшим развитием планетарных передач стали волновые редукторы. Они обеспечивают большое передаточное отношение, плавность хода и высокую точность позиционирования выходного вала. Благодаря этому такие модели стали основой построения промышленных роботов. Наряду с высокими характеристиками, данные типы передач отличаются высокими требованиями к изготовлению, а, следовательно, и высокой стоимостью, что существенно сдерживает распространение данных моделей.

Как устроена ГП?

Из чего состоит главная передача:

  • коническая шестерёнка;
  • коническое колесо.

Шестерёнка — это ведущая деталь (к ней присоединяется тяга от КПП и мотора), а колесо — ведомый элемент (принимает тягу от зубчатого колеса и передаёт её под углом 90°).

Шестерни выполняют с зубьями в виде спирали, из-за этого увеличивается их твёрдость и количество. При этом они сцеплены, и шестерёнки функционируют плавно и без шума.

Это интересно: Тюнинг Citroen C3 с фото

Помимо конической шестерёнчатой передачи с осями, которые пересекаются взаимно, в машине используют гипоидную передачу. Тут зубья обладают определённой конструкцией и осью небольшой конической шестерёнки. Она сдвинута вниз по отношению к центру наибольшей шестерёнки на определённое расстояние.

Это позволяет разместить кардан ниже и снизить высоту выпуклой верхней части туннеля для расположения вала на днище кузова, за счёт этого увеличивается площадь салона автомобиля.

Появляется возможность немного уменьшить центр тяжести машины и увеличить её устойчивость. Гипоидная передача имеет значительную плавность хода, высокую прочность зубьев и износоустойчивость.

Принцип работы одноступенчатого редуктора

Он достаточно прост для понимания. В таком механизме через расположенную на одном валу звездочку меньшего размера на установленную на другом валу, имеющую больший размер, через зубья передается вращательное движение. Эффект снижения количества оборотов в минуту достигается за счет разницы в диаметре звездочек. Длина круга, который очерчивает в процессе движения первая, существенно меньше того, который очерчивает вторая, поэтому большая звездочка вращается медленней.

Этот тип редуктора является самым простым. Отличается от прочих он тем, что передача движения производится через одно звено, а не через несколько, при этом входящее и исходное вращения имеют противоположные направления.

Передача крутящего момента может производиться и с использованием червячного механизма, но при этом на передаточное число влияет диаметр «червяка».

ГП на заднеприводных автомобилях

Другие виды главной передачи устанавливаются на заднеприводные авто, так как мотор с КПП находятся параллельно ходу, и крутящий момент подаётся на ведущую ось вертикально.

На заднеприводных машинах чаще всего установлена гипоидная передача, которая обладает наименьшей нагрузкой на зуб и создает минимальную степень шума. При функционировании уменьшается коэффициент полезного действия, т. к. смещённые крепления зубчатых колёс повышают коэффициент трения при скольжении.

На машинах с гипоидной ГП передаточное число составляет 3,5 — 5,4, на грузовых авто 5 — 7. Данная передача разнится с цилиндрической: ось вала не перекрещивается с шестерёнкой, т.к. форма позволяет спускать кардан и уменьшать клиренс кузова, это приводит к максимальной устойчивости автомобиля.

Это интересно: Hyundai Tucson VS Mazda CX-5 VS Nissan X-Trail

Если владельцу авто неинтересны размеры и степень шума, то используется ГП канонического вида. Червячная передача устанавливается очень редко, так как её производство трудозатратное и дорогое.

Для нормального функционирования трущихся элементов и зубьев требуется смазка. В картер или задний мост наливается специальное масло. Его уровень требуется контролировать для обеспечения стабильной работы элементов машины.

Расчет конического редуктора

При проектировании конического редуктора необходимо определить его тип, размеры и технические характеристики исходя из требований и возможностей его эксплуатации на предприятии, а также экономичность его изготовления.

Далее будет описана последовательность расчета конического редуктора, для которого необходимо предварительно определить:

  • крутящий момент;
  • частоту вращения валов;
  • планируемый срок работы.

Чтобы выполнить расчет потребуется специализированная литература, содержащая таблицы коэффициентов и значений, а также знание определенных формул.

Последовательность действий при расчете конического редуктора:

  1. Определить передаточное число.

    U = nвх/nвых ; где

    nвх – частота вращения входного вала;

    nвых – частота вращения выходного вала.

  1. Вычислить количество зубьев.Для шестерни входного вала:

    Z1=22-9lgU

    Для шестерни выходного вала:

    Z2=Z1U

    Полученные значения округляют в большую сторону до стандартного.

  1. Вычислить фактического передаточное значение.

    Uф=Z1/Z2

  1. Определить КПД.Стандартное значение 0,96
  1. Произвести расчет мощности.Мощность на выходном валу:

    p = Tnвых/9550

    Мощность электродвигателя:

    рэл = р/КПД

    Т – крутящий момент.По таблицам следует выбрать электродвигатель с приближенной большей мощностью.

  1. Определить твердость шестерней и материал.

    НВ =7000×√(Т/dэл)

    где dэл— диаметр вала электродвигателя.

    Полученное число округлить в большую сторону кратно 10. Выбрать материал с подходящей твердостью и записать его пределы текучести и прочности.

  1. Произвести расчет допускаемых напряжений.Наибольшим нагрузкам при работе подвергается шестерня. Поэтому необходимо выяснить количество циклов нагружения на всем сроке эксплуатации механизма. Для этого определяем время его работы в часах:

    t = 365LKгод24Kсут

    где L – срок работы агрегата;

    Kгод– коэффициент загрузки в год;

    Kсут– коэффициент загрузки в сутки.

    Количество вращений шестерни:

    N = 60tnэлектродвигателя

    Допустимое значение контактной выносливости:

    δH×δH0/SH×KHL

    где δH0 — предельное значение контактной выносливости в МПа;

    SH – коэффициент запаса контактной прочности (равен 1,1);

    KFH — коэффициент долговечности.

    Допустимое значение выносливости на изгиб:

    δF×δF0/SF×KFL

    где δF0 — предельное значение выносливости на изгиб в МПа;

    SFкоэффициент запаса прочности на изгиб (равен 1,75);

    KFL — коэффициент долговечности.

  1. Рассчитать предварительный делительный диаметр зубчатого колеса.

    dпр = 18163√(1,2T/δ2нU)

  2. Вычислить предварительный модуль.

    mпр = dпр/Z1

    Полученный модуль уточнить по ГОСТу.

  1. Найти внешнее конусное расстояние.

    R = (m√(Z21+Z22))/2

  2. Найти диаметры вершин зубьев и делительных окружностей шестерни.dвнеш1 = mZ1;dвнеш2 = mZ2;dвер1 = dвнеш1+2mcosδ1;dвер2 = dвнеш2+2mcosδ2
  3. Вычислить ширину колеса.

    b = 0,285R

    Полученную ширину округлить в большую сторону до стандартного значения.

  1. Определить высоту зубьев.

    h = 2,2m

  2. Произвести расчет валов редуктора.

    D = 3√(T/0,2τ)

    где τ — допустимое значение касательного напряжения в МПа.

  1. Выбрать по размеру диаметров валов тип и размеры подшипников.
  2. Произвести расчет зубчатого колеса.
  3. Произвести расчет размеров корпуса.

Добиться необходимой прочности стенок корпуса агрегата и его деталей можно при помощи дополнительных ребер жесткости. Рекомендуется по возможности использовать пластмассы и другие легкие материалы, если это позволяют делать конструктивные возможности механизма. В целях экономии при создании редуктора следует выбирать материалы с более дешевой стоимостью, при условии, что это никак не скажется на его дальнейшей работе.

Конические редукторы нашли широкое применение на производстве. Несмотря на небольшие недостатки, они часто применяются в станках, поворотных механизмах и машинах. Использование таких агрегатов позволяет передать вращение под углом в 90 градусов, а также сделать реверс.

Обслуживание колесного редуктора

Для повышения надёжности агрегата и продления срока его безопасного функционирования, необходимо с определённой периодичностью проводить его техосмотр и соответствующее обслуживание, используя для этого специальную контролирующую и измерительную аппаратуру. Перед началом ремонтных работ следует предварительно отсоединить коробку передач от корпуса сцепления, под который, впрочем, как и под передний мост, устанавливают подвижные подставки. Под коробку передач ставится подставка неподвижного типа. Далее следует отключить гидросистему и разъединить тракторный остов, раскатать его и отсоединить от корпуса сцепления полураму.

После того как разборка завершена, можно переходить к диагностике агрегата, в первую очередь обратив внимание на следующие моменты:

  • Показатели уровня масла в гидравлическом баке;
  • Функционирует ли двигатель на полной мощности;
  • В каком состоянии находится ходовая;
  • Имеет ли место утечка масла;
  • Есть ли давление в сливной линии гидромотора и на входе в него;
  • В каком состоянии находятся крепёжные соединения;
  • Исправны ли подшипники роликового типа;
  • Не нуждается ли в замене система зубчатого сцепления на верхних и нижних конических парах.

Если в процессе осмотра колёсного редуктора будет обнаружено существенное уменьшение уровня масла в верхней конической паре, значит это верный признак того, что в системе имеется утечка. Нужно обязательно выявить причины её возникновения и максимально оперативно устранить неисправность. Вполне возможно, что для этого может потребоваться даже частичная разборка этого узла, хотя, по сути, это единственный способ устранения проблемы.

Предназначение и устройство

Если кто-то из читателей помнит, то мы касались работы дифференциала, тоже принимающего участие в работе с крутящим моментом. В отличие от него, редуктор не перераспределяет этот момент, а предназначен для его понижения или повышения. На каждой ведущей оси расположен свой редуктор — поэтому они называются передний и задний.

Изготавливается данное устройство из стальных сплавов, которые отличаются высокой прочностью и могут гарантировать длительную эксплуатацию в неблагоприятных условиях.

В заднем редукторе предусматривается ведущая соединенная с карданным валом и ведомая шестерни. У каждого редуктора одним из основным параметров является передаточное число. При этом, в легковых машинах оно традиционно ниже, чем в коммерческом транспорте. Для того, чтобы понять суть передаточного числа, достаточно представить себе количество зубьев у ведомой и ведущей шестеренок. Само число означает, сколько раз ведомая может провернуться за 1 оборот ведущей.

Конструкция и назначение редуктора

Механизм, служащий для понижения угловой скорости и одновременно повышающий крутящий момент, принято называть редуктором. Энергия вращения подводится на входной вал редуктора, далее в зависимости от передаточного отношения на выходном валу получаем пониженную частоту и увеличенный момент.

В состав редуктора в зависимости от типа механической передачи обычно входят зубчатые или червячные пары, центрирующие подшипники, валы, различные уплотнения, сальники и т.д. Элементы редуктора помещаются в корпус, состоящий из двух частей – основания и крышки. Рабочие механизмы редуктора при работе непрерывно смазываются маслом путем разбрызгивания, а в отдельных случаях применяется принудительный насос, помещенный внутрь редуктора.

Существует огромное количество различных типов редукторов, но наибольшую популярность получили цилиндрические, планетарные, конические и червячные редукторы. Каждый тип редуктора имеет свои определенные преимущества и недостатки, которые следует учитывать при конструировании оборудования. Основными же критериями для подбора редуктора являются определение необходимой мощности или момента нагрузки, коэффициента редукции (передаточного отношения), а также монтажного расположения источника вращения и рабочего механизма.

Применение

Сегодня электродвигатель с планетарным редуктором получили весьма широкое распространение, могут применяться в самых различных случаях. Область применения во многом зависит от конструктивных особенностей устройства и его характеристик. Выделяют следующие варианты исполнения:

  1. Цилиндрические. Это связано с тем, что конструктивные особенности позволяют обеспечить КПД около 95%. Назначение редуктора с планетарной передачей заключается в передаче достаточно большого усилия между параллельными и соосным валами. Передача вращения осуществляется за счет прямозубых, косозубых и шевронных колес. Коэффициент может варьировать в пределе от 1,5 до 600. Достоинством подобного варианта исполнения можно также назвать компактные размеры, а также высокую степень защиты от воздействия окружающей среды.
  2. Конические сегодня также встречаются довольно часто. Конструктивной особенностью можно назвать то, что шестерни имеют коническую форму. За счет подобной формы обеспечивается плавность сцепки, а также высокую степень устойчивости к нагрузкам. В алы в данном случае могут располагаться вертикально или горизонтально.
  3. Могут применяться и волновые устройства. Они характеризуются тем, что имеют гибкое промежуточное число. Основными конструктивными элементами можно назвать эксцентрики и кулачки, которые обеспечивают растяжение гибкого колеса. Подобный вариант исполнения характеризуется высоким передаточным числом, плавностью хода и повышенной степенью герметичности. Выделяют несколько различных разновидностей этого механизма, к примеру, могут применяться различные типы подшипников.

Несмотря на достаточно сложную конструкцию, она получила весьма широкое распространение. Примером можно назвать машиностроительную область, станкостроение и производство различных механизмов. Примером можно назвать автомобильную коробку передач, которая предназначена для передачи вращения и изменения предаваемого усилия или скорости.

Наиболее важными параметрами выбора можно назвать следующие показатели:

Тип передачи, которая применяется для передачи вращения.
Максимально допустимая осевая и консольная нагрузка. На момент эксплуатации редуктора нагрузка, возникающая на момент работы распределяется самым различным образом.
Имеет значение и размер редуктора. Слишком большой показатель определяет отсутствие возможности установки в тех или иных условиях

Однако, нужно уделить внимание тому моменту, что увеличение мощности достигается исключительно за счет увеличения размеров устройства. Поэтому приходится подбирать более оптимальный вариант исполнения.
Диапазон температур, при которых механизм может применяться

Тип применяемого материала при изготовлении корпуса и основных элементов определяет то, в каких условиях устройство может эксплуатироваться. Слишком высокая температура становится причиной повышения пластичности и снижения твердости поверхности, за счет чего есть вероятность деформации и износа изделия. Для обеспечения охлаждения проводится добавление масла. Не все варианты исполнения могут применяться для длительной работы, некоторые могут эксплуатироваться только периодически.
Популярность производителя также имеет значение. Некоторые заводы характеризуются тем, что производят качественные и долговечные механизмы.

Все наиболее важные параметры указываются в инструкции по эксплуатации, что существенно упрощает процесс выбора подходящего варианта исполнения.

Неисправности

Причины появления неисправностей

Редуктор заднего моста – сложный механизм, состоящий из большого числа элементов. Неисправность любого из них может привести к выходу из строя всей системы.

  1. Перегруз системы. Одной из самых распространенных причин выхода из строя редуктора заднего моста является частое превышение положенной нагрузки на автомобиль. Например, при буксировке тяжелых транспортных средств или других грузов. Во время буксировки нагрузка на все элементы системы существенно увеличивается.
  2. Люфт в крестовинах. Многие автомобилисты отмечают, что через 5-6 лет эксплуатации авто в крестовинах появляется люфт. Это происходит из-за повышенной детонации двигателя, не отрегулированного зажигания и возникающих в связи с этим толчков и ударов. Поэтому в ходе ремонта проводят диагностику всех элементов ходовой части и не ограничиваются заменой передаточного механизма.
  3. Отсутствие смазки. Если в редукторе заднего моста нет масла, то его может заклинить, из-за перегрева. Могут лопнуть стальные части или сломаться зубья на шестеренках. Чтобы избежать подобных проблем, необходимо держать уровень смазки под контролем.
  4. Выработка подшипников, расположенных в «чулках». Эта неисправность появляется после долгих лет эксплуатации автомобиля. Она может спровоцировать искривление валов и разрушение зубчатых передач. В результате редуктор заднего моста будет не пригоден для ремонта.

Признаки неисправностей

О проблемах, связанных с работой редуктора заднего моста, вы узнаете по характерному шуму:

  1. Усиленный шум моста. Возможно, деформировалась балка, износились шестерни и полуоси, понижен уровень масла или наблюдается его утечка. Шум, появившийся сразу после ремонта, является следствием неправильной регулировки.
  2. Шум во время разгона. Если шум появляется во время разгона автомобиля, значит изношены или повреждены подшипники дифференциала, либо полуосей. Еще одна возможная причина – недостаток смазки в редукторе.
  3. Шум во время разгона и торможения. Если шум появился не только во время разгона, но и при торможении автомобиля, значит, износились или разрушены подшипники ведущей шестерни. Возможно, в шестернях главной передачи нарушены зазоры.
  4. Шум на поворотах. Если вы заметили появление шума на поворотах, значит, в автомобиле неисправны подшипники полуосей. Возможные причины – задиры на поверхности сателлитов или их слишком тугое вращение.
  5. Стуки в начале движения. Скорее всего, увеличен зазор шлицевого соединения вала ведущей шестерни с фланцем. Также вероятно, что в отверстие для оси сателлитов, расположенное в дифференциале, изношено.

Тестовые испытания автомобиля

Тест 1. Начните движение по шоссе со скоростью 20 км/ч, затем плавно увеличивайте скорость до 90 км/ч. Одновременно прислушивайтесь к звукам, которые издает автомобиль на разной скорости. Отпустите педаль управления дроссельной заслонкой и, не притормаживания, погасите скорость двигателем. Следите за изменением шума.

Тест 2. Во время движения со скоростью 100 км/ч переключите рычаг в нейтральное положение, выключите зажигание и свободно катитесь до полной остановки. Следите за изменением шума на разных скоростях замедления.

Тест 3. Автомобиль в неподвижном положении, на ручном тормозе. Запустите двигатель машины и, постепенно увеличивая обороты, прислушайтесь к возникшим шумам. Если вы слышите такой же шум, как при испытании №1, значит их источником является не редуктор, а другие узлы автомобиля.

Тест 4. Если шум, выявленный на испытании №1, не повторился на испытаниях №2 и №3, значит, он исходит от редуктора. Чтобы окончательно в этом убедиться, поднимите задние колеса машины, запустите двигатель и переключитесь на четвертую передачу. Это позволит вам убедиться, что источником шума является именно редуктор, а не подвеска или кузов.

Как избежать преждевременного выхода редуктора моста из строя? Нужно следить за уровнем масла, прислушиваться к шумам и стукам в автомобиле, визуально осматривать мост на предмет течи и внешних повреждений балки.

Гипоидный тип ведущего моста

Говоря простым языком, в гипоидном типе передача вращающего момента осуществляется путем одного преобразования – углового. Момент вращения передается от ведомого вала главной пары редуктора на ступицу колеса непосредственно через полуось, взаимодействующую с чашкой дифференциала редуктора (разделяет вращающие моменты правой и левой полуоси) посредством шлицевого соединения.

К ступице же полуось крепится жестко фиксировано, болтовым соединением через фланец. Исключение – Scania, в конструкции гипоидных мостов которой используются полуоси с двумя шлицевыми соединениями. Внешние шлицы взаимодействуют с фланцем-крышкой ступицы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector